RAG: KI-Basismodelle mit eigener Wissensbasis verknüpfen

Gerade Kleine und Mittlere Unternehmen (KMU) können es sich oftmals nicht leisten, eigene Trainingsmodelle (Large Language Models) zu entwickeln. KMU greifen daher gerne auf bekannte Modelle wie ChatGPT usw. zurück.

Es wird allerdings gerade bei innovativen KMU immer klarer, dass es gefährlich sein kann, eigene Datenbestände in z.B. ChatGPT einzugeben. Da diese Modelle nicht transparent sind ist unklar, was mit den eigenen Daten passiert.

Eine Möglichkeit aus dem Dilemma herauszukommen ist, RAG (Retrieval-Augmented Generation) zu nutzen – also ein Basismodell mit einer internen Wissensbasis zu verknüpfen:

Retrieval-Augmented Generation (RAG): Bei RAG wird ein Basismodell wie GPT-4, Jamba oder LaMDA mit einer internen Wissensbasis verknüpft. Dabei kann es sich um strukturierte Informationen aus einer Datenbank, aber auch um unstrukturierte Daten wie E-Mails, technische Dokumente, Whitepaper oder Marketingunterlagen handeln. Das Foundation Model kombiniert die Informationen mit seiner eigenen Datenbasis und kann so Antworten liefern, die besser auf die Anforderungen des Unternehmens zugeschnitten sind” (heise business services (2024): KI für KMU: Große Sprachmodelle erfolgreich einsetzen – mit Finetuning, RAG & Co.).

Wir gehen noch einen Schritt weiter, indem wir (1) einerseits LocalAI und Open Source AI mit einem Assistenten nutzen, und (2) darüber hinaus mit Hilfe von Ollama und Langflow eigene KI-Agenten entwickeln, die auf Basis von Open Source AI Modellen und beliebig konfigurierbaren eigenen Input einen gewünschten Output generieren In dem gesamten Prozess bleiben alle Daten auf unserem Server.

Wissensmanagement: Datenbasierte Wissensnutzung in Projekten mit KI

Zeichen, Daten und Informationen sind stellen die Basis für jede Art von Wissen, der Wissensnutzung und der Wissenskonstruktion dar. Der Aufbau einer Wissensbasis während der Projektabwicklung hilft dabei das Projektmanagement zu verbessern, und das projektspezifische Wissen auch anderen Projekten zur Verfügung zu stellen. Gerade in Zeiten neuer Möglichkeiten wie der KI (Künstliche Intelligenz) ist das Projektmanagementwissen ein spannendes Thema. Doch worauf sollte dabei geachtet werden? Dazu habe ich folgendes gefunden:

“Wissensmanagement (WM): Die Wiederverwendung von Wissen, insbesondere Projektwissen, ist im PM essentiell. Angewandte Techniken sind vor allem Information Retrieval (IR), Natural Language Processings, und Ontologien als Wissensspeicher. Kenntnisse aus diesen Wissensgebieten sind notwendig, da sie a) aus PM-Sicht dafür sorgen, dass die richtigen Daten identifiziert werden, b) dass die Daten aus Data Analytics-Sicht richtig erfasst und untersucht werden und c), dass die Daten aus Sicht des Wissensmanagements in einer Wissensstruktur für die Nachnutzung sauber bereitgestellt werden” (…) Die Verwendung von Ontologien als Speicher von Wissensobjekten und die integrierte Anwendung der Methode des Case-Based Reasoning eröffnet im genannten Kontext Potentiale für ein verbessertes Projektmanagement” (Kusturica, W. Laroque, C. (2024) in Bernert et al. (2024): KI in der Projektwirtschaft).

Die Autoren haben diesen Ansatz in dem Beitrag anhand eines Fallbeispiels ausführlich dargestellt.

Solche Zusammenhänge thematisieren wir auch in dem von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Aufbau einer Wissensbasis während der Projektabwicklung

Spirale des Aufbaus einer Wissensbasis während der Projektabwicklung (Cüppers, C. (2007): Wissensmanagement in Projektorganisationen, projektmanagementaktuell 2/2007)

In Projekten werden viele Daten generiert und Informationen bearbeitet. Beides sind wichtige Bausteine einer Wissensbasis in projektorientierten Organisationen. Diese Wissensbasis baut sich zyklisch über die Projektabwicklung auf (Abbildung).

Die einzelnen Aktivitäten sind dabei die Wissensidentifikation, der Wissenserwerb, die Wissensentwicklung, die Wissensverteilung, die Wissensbewertung und die Wissensnutzung. Es ist deutlich zu erkennen, dass sich die Autorin an den Kernaktivitäten des Wissensmanagements orientiert hat (z.B. nach Probst et al.). Weiterhin zeigt die Abbildung, dass sich die jeweilige Wissensbasis über die Projekte P1 bis P4 immer weiter aufbaut.

“Ein Projekt beginnt zu einem definierten Zeitpunkt mit der Projektinitiierung. Es durchläuft verschiedene Phasen bis hin zum Projektabschluss bzw. zur Projektnachbereitung, in denen sich die in der Abbildung als Spirale dargestellte organisationale Wissensbasis stetig vergrößert. Jedes Projekt durchläuft die komplette Spirale unabhängig von den durchgeführten Projektphasen. Die Projektdauer kann von Projekt zu Projekt unterschiedlich sein, es werden jedoch immer alle Sektoren der Spirale durchlaufen. In den ersten drei Sektoren wird das für das Projekt erforderliche Wissen aus Bekanntem generiert, neu entwickelt und von außen erworben. In den folgenden drei Sektoren wird es dann selektiert, kommuniziert, dokumentiert, gespeichert und angewandt. Die Wissensbasis wächst kontinuierlich, sodass Folgeprojekte profitieren. Da in einem Unternehmen in der Regel mehrere Projekte gleichzeitig ablaufen und die Mitarbeiter zum Teil an mehreren Projekten arbeiten, ist der Übergang zwischen den einzelnen Projekten fließend” (Cüppers 2007).

Siehe dazu auch Wissen und Erfahrungen als Input und Output von Projekten, Umgang mit Wissen in Projekten und Projektwissensmanagement – ein spannendes Thema.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.