Hybride Intelligenz: Zusammenspiel von Mensch, Maschine und Künstlicher Intelligenz

Wenn es um zu lösende Probleme in einem beruflichen Umfeld geht, so gibt es dabei sehr viele einzelne Aufgaben, die im Zusammenspiel von Menschen, Maschinen und Künstlicher Intelligenz gelöst werden können. Welche “Konfiguration” dabei angemessen erscheint, ist Abhängig vom Kontext, dem Task (Aufgabe) und den vorhandenen Problemlösungspotentialen. An dieser Stelle kommt der Begriff Hybride Intelligenz ins Spiel.

“Dellermann, Ebel, Söllner und Leimeister (2019: 638) definieren hybride Intelligenz als die Fähigkeit, komplexe Ziele durch die Kombination menschlicher und künstlicher Intelligenz zu erreichen, kontinuierlich voneinander zu lernen und dabei Ergebnisse zu produzieren, die über das hinaus gehen, was KI oder Mensch allein hätten erreichen können. Nicht immer lässt sich hierbei trennscharf zwischen Automation und Augmentation unterscheiden (Raisch & Krakowski, 2021). Der Grad der Automation bzw. Augmentation hängt immer individuell von der jeweiligen zu lösenden Aufgabe ab” (Piller et al. 2024, in Koller et al. 2024: Die Zukunft der Grenzenlosen Unternehmung).

Was allerdings unter “Menschlicher Intelligenz” verstanden wird, ist dabei nicht weiter erläutert. Ich gehe daher davon aus, dass von dem bekannten Intelligenzquotienten (IQ) ausgegangen wird, der sich in einer Zahl manifestiert. Dass das im Zusammenhang mit den Entwicklungen bei der Künstlichen Intelligenz kritisch sein kann, wird in dem Blogbeitrag OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? deutlich.

Wenn wir weiterhin beachten, dass auch der Intelligenz-Begriff erweitert werden sollte, können wir möglicherweise auch von einer Multiplen Künstlichen Intelligenz sprechen. Siehe dazu auch Multiple Artificial Intelligences (MAI) statt Artificial General Intelligence (AGI)?

Multiple Artificial Intelligences (MAI) statt Artificial General Intelligence (AGI)?

Adobe: AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

In den Diskussionen um Künstliche Intelligenz (KI) – oder englischsprachig Artificial Intelligence (AI) – führt die Systembetrachtung zu einer Art Generellen Künstlichen Intelligenz – General Artificial Intelligence (GAI) oder auch Artificial General Intelligence (AGI). Darunter ist folgendes zu verstehen:

“A system believed to perform (solve) domain-general cognitive tasks (problems; what some may also call AGI). … [it seems to] leave little room for AI as a theoretical tool for cognitive science. The reason is that BigTech currently dominates the narrative, with a focus on technological progress and impressive machine learning applications” (van Rooij et al. 2024).

Es geht also bei AGI um eine von Technologie dominierte generelle kognitive Problemlöse-Fähigkeiten eines Systems. Diese Sichtweise liegt in der Tradition von Simon, Shaw und Newell. die 1957 die Software “General problem Solver” entwickelten (Quelle: Wikipedia).

Das erinnert insgesamt stark an die Diskussionen, bei denen es um Menschliche Intelligenz geht. Auch hier steht immer wieder die Frage im Raum, ob es sich bei der Menschlichen Intelligenz um eine Generelle Intelligenz handelt, die mit einem Intelligenz-Quotienten (IQ) bestimmt werden kann, oder ob es um Multiple Intelligenzen im Sinne von Howard Gardner oder auch Sternberg etc. geht. Dabei geht Howard Gardner bei Intelligenz bewusst von einem “biopsychologisches Potenzial ” aus, was Künstliche Intelligenz wiederum aus seiner Sicht ein Kategorienfehler zu sein scheint.

Wenn wir also den Trend von einer Generellen Menschlichen Intelligenz zu eher Multiplen Intelligenzen unterstellen, sollten wir dann nicht statt Artificial General Intelligence eher von Multiple Artificial Intelligence (MAI) ausgehen?

Wenn Sie diesen Begriff in Google eingeben, werden Sie einige Treffer erhalten. Dabei geht es allerdings hauptsächlich um eine Art Vielfalt der verschiedenen AI-Anwendungen. Ich meine mit dem Begriff Multiple Artificial Intelligences ein hybrides Intelligenz-Konstrukt, das die Menschliche und Künstliche Intelligenz kontextbezogen für komplexe Problemlösungen in einem bestimmten kulturellen Umfeld beschreiben kann..

Wisdom of Crowds – Schwarm Intelligenz – Kollektive Intelligenz

Quelle: Feldhusen, B. (2021)

Der Begriff “Künstliche Intelligenz” hat uns wieder darauf gestoßen, dass es Sinn macht, sich auch mit der Menschlichen Intelligenz zu befassen. Entscheidend dabei ist, was unter der Menschlichen Intelligenz verstanden wird, und was unter einer gemeinsamen, eher Kollektiven Intelligenz verstanden wird.

Wie die Leser unseres Blog wissen, tendieren wir dazu, wie Howard Gardner von Multiplen Intelligenzen zu sprechen, was einer Ergänzung/Entgrenzung des klassischen Intelligenz-Quotienten entsprechen würde. Multiple Intelligenzen sind nach Howard Gardner “biopsychologisches Potential”, sodass der Begriff “Künstliche Intelligenz” eher ein Kategorienfehler ist. Siehe dazu auch OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Intelligenz kann dabei auf der individuellen Ebene, auf der Gruppenebene, auf der Ebene der Organisation, oder auch in Netzwerken thematisiert werden.

In diesem Beitrag soll es hauptsächlich um eine gemeinschaftliche, Kollektive Intelligenz gehen, die nicht einfach eine Menge von Individuen bedeutet, sondern erst unter bestimmten Bedingungen entsteht. Dazu gab es in der Vergangenheit weitere Begriffe wie Wisdom of Crowds, Schwarmintelligenz und eben Kollektive Intelligenz, die sich in ihrer Interaktionsqualität von Kumulation/Aggregation bis hin zu Interaktion/Kreation unterscheiden (Abbildung). Diese Unterschiede beschreibt Feldhusen (2021) wie folgt:

“Vielmehr entsteht Kollektive Intelligenz durch die Qualität menschlicher Begegnung und ihres Design- bzw. Organisationsprozesses. Entscheidend ist, wie wir uns und anderen zuhören, Unterschiede wahrnehmen und verarbeiten, aufeinander eingehen, uns auf neue Perspektiven einlassen, miteinander Lösungen verhandeln, uns und dem Prozess der Interaktion Aufmerksamkeit schenken. Wie eingangs zitiert, sieht Gary Hamel die Führungskräfte der Zukunft als Architekten sozialer Systeme. Dies bedeutet für die meisten Mitarbeiter/innen und Führungskräfte einen tiefgreifenden Reife- und Entwicklungsprozess hin zu einer Haltung, die dem Gegenüber mindestens die gleiche Bedeutung beimisst wie dem Selbst” (Feldhusen, B. (2021): Kollektive Intelligenz und Psychologische Sicherheit: Haben wir Intelligenz im Gefühl?. Organisationsberatung Supervision Coach 28, 355–371 (2021). https://doi.org/10.1007/s11613-021-00719-2).

Siehe dazu auch Schwarmintelligenz: Die Weisheit der vielen und das Wissen der Eliten.

Spirituelle Kompetenz – ohne esoterisch zu werden

mage by StockSnap from Pixabay

Heute geht es oft um die täglich zu bewältigenden Aufgaben, die immer komplexer werden. Darüber hinaus geht es allerdings auch um die “großen Fragen”, wie die zur menschlichen Entwicklung, zu ethischen Herausforderungen usw. Diese Themen sind oft “weit weg” von der täglichen Praxis und auch schwer fassbar,. Dennoch ist es wichtig, sich mit den “großen Fragen” zu befassen, und ein für sich angemessenes Handeln daraus abzuleiten. Diese Form der Kompetenz ist Bestandteil einer Selbstkompetenz, die als Spirituelle Kompetenz bezeichnet werden kann.

Spirituelle Kompetenz, diese im Kontext der realistischen Wenden beinahe in Vergessenheit geratene und in die Esoterik abgedrängte Dimension der Selbstkompetenz, ist der eigentliche Kern jeglicher Persönlichkeitsbildung. Die „innere Entwicklung“ der Lernenden transformiert die Wertvorstellungen und ethischen Maßstäbe sowie Möglichkeiten ihres Handelns. In Ihnen wird sichtbar, welche besondere Bedeutung die Lernenden mit ihrem Leben ausdrücken wollen. Spirituelle Kompetenz ist die Fähigkeit, sich selbst und die Welt im Bewusstsein der „großen Fragen“ zu deuten und entsprechend zu handeln (vgl. Astin/Astin/Lindholm 2011).” (Arnold 2017).

Interessant ist darüber hinaus, dass es in der Multiple Intelligenzen Theorie von Howard Gardner auch die Spirituelle Intelligenz gibt. In dem Zusammenhang ist es wichtig, Ähnlichkeiten und Unterschiede der verschiedenen Begriffe herauszustellen. Siehe dazu auch

Kompetenz und Intelligenz – eine Gegenüberstellung

Anmerkungen zu Growth Mindset, Intelligenz und Kompetenz

Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen?

Business Agility und Organizational Agility

Top view of multiracial young creative people in modern office. Group of young business people are working together with laptop, tablet, smart phone, notebook. Successful hipster team in coworking. Freelancers.

Es ist in der Zwischenzeit unstrittig, dass sich Organisationen an das veränderte Umfeld dynamisch anpassen müssen. Wenn es um Strukturen, Prozesse und Technologien geht, wird das oft als Business Agility bezeichnet.

Eine Organizational Agility oder Systemic Agility geht darüber hinaus. Hier steht “(…) ein menschenzentrierter Ansatz im Mittelpunkt, der die Selbstorganisation der Mitarbeitenden und Teams fördert” (Tuczek et al. 2024, in projektmanagementaktuell 04/2024).

“Das Wachstum der Organisation basiert auf dem Wachstum der Individuen in der Organisation und der Entwicklung einer „Kollektiven Intelligenz“. Zukünftig wird auch die Künstliche Intelligenz Teil dieser Collective Intelligence werden und neue Potenziale eröffnen” (Tuczek et al. 2024, in projektmanagementaktuell 04/2024).

Interessant ist hier der Hinweis auf die Selbstorganisation der Mitarbeitenden und Teams, die aus meiner Sicht noch auf die Ebenen Organisation und Netzwerk erweitert werden müsste. Weiterhin wird der Begriff der “Kollektive Intelligenz” in diesem Zusammenhang verwendet, allerdings ohne zu erwähnen, was darunter gerade im Zusammenspiel zwischen einer Menschlichen Intelligenz und einer Künstlicher Intelligenz gemeint ist.

In meiner Veröffentlichung Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk bin ich solchen Fragen auf Basis der Multiple Intelligenzen Theorie nachgegangen.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?

Lott, M. (2024): Massive breakthrough in AI intelligence: OpenAI passes IQ 120

Wenn wir von Intelligenz sprechen geht es oft um den Intelligenz-Quotienten (IQ) bei Menschen, dessen Ergebnisse in einer Normalverteilung dargestellt werden. Der Wert für den IQ kann dabei aus unterschiedlichen Testverfahren bestimmt werden. Der Mensa Norway IQ-Test ist dafür ein Beispiel.

Maxim Lott hat die dort gestellten Fragen von verschiedenen KI-Anwendungen beantworten lassen. Das Ergebnis ist in der Abbildung zusehen. Das neu vorgestellte Modell “o1” von OpenAI schneidet hier mit 120 Punkten am besten ab. Was bedeutet das?

Da in den IQ-Tests oftmals eher logisch-mathematische Attribute abgefragt werden, ist das Ergebnis wenig überraschend. Es stellt sich aus meiner Sicht eher die Frage, ob der Intelligenz-Quotient (IQ) mit seinen in den letzten über 100 Jahren entwickelten Messverfahren geeignet ist, menschliche Intelligenz abzubilden.

Wird das Verständnis von Intelligenz erweitert (entgrenzt), so kommen Dimensionen wie Emotionale Intelligenz, Soziale Intelligenz usw. hinzu, die von einer KI-App nicht, oder nur bedingt abgebildet werden können.

Aus meiner Sicht bedeutet das Ergebnis (Siehe Abbildung) also nicht, dass Künstliche Intelligenz genau so intelligent – oder intelligenter – als ein Mensch ist, sondern dass das zugrundeliegende Intelligenz-Konstrukt (IQ) möglicherweise nicht passt. In der von Howard Gardner vorgeschlagenen Theorie der Multiplen Intelligenzen ist Intelligenz beispielsweise wie folgt beschrieben:

„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner 2002:46-47).

Der Hinweis auf ein “biopsychologisches Potenzial” deutet schon an, dass es für Howard Gardner bei dem Begriff “Intelligenz” für menschliche Intelligenz verwendet. Den Begriff “Künstliche Intelligenz” sieht Howard Gardner daher als Kategorienfehler. Siehe dazu auch Multiple Intelligenzen nach Howard Gardner: Ist eine Intelligenz der anderen überlegen?

Multiple Intelligenzen nach Howard Gardner: Ist eine Intelligenz den anderen überlegen ?

Die von Howard Gardner veröffentlichte Theorie der Multiplen Intelligenzen geht von relativ unabhängigen Intelligenzen aus. Die Anzahl hat sich dabei in den letzten Jahren von 7 auf 9 erweitert. Es ist in diesem Zusammenhang wichtig, dass Howard Gardner den Intelligenz-Begriff beispielsweise im Vergleich zu dem oftmals vorherrschenden psychometrischen Intelligenzkonstrukt (Beispiel: Intelligenz-Quotient / IQ) entgrenzt/erweitert.

(…) the predictive value of IQ measures had been found to be poor in situations requiring production and evaluation of new ideas (Feldman 1980: 89-90).

Wenn es also verschiedene Multiple Intelligenzen gibt, so kann durchaus die Frage gestellt werden, ob nicht eine davon den anderen überlegen ist. Genau diese Frage hat Howard Gardner in dem englischsprachigen Blogbeitrag Are Some Intelligences Superior to Others? vom 11.04.2023 mit einem klaren NEIN beantwortet. Es kann zwar vorkommen, dass in einer Situation die eine oder andere Intelligenz dominiert, in einer anderen Situation aber wiederum nicht.

In einem speziellen beruflichen Umfeld (Kontext, Domäne) zeigen sich immer mehrere Intelligenzen.

In diesem Sinne hat man diese Multiplen Intelligenzen nicht, sondern sie zeigen sich in intelligenten (komplexen) Problemlösungen.

In diesem Zusammenhang musss ich auch die Frage stellen, ob die Künstliche Intelligenz der Menschlichen Intelligenz, oder die Menschliche Intelligenz der Künstlichen Intelligenz überlegen ist. Dieses Thema werde ich in einem der folgenden Blogbeiträge (versuchen zu) beantworten.

Emotionale Intelligenz und Emotionale Kompetenz

mage by StockSnap from Pixabay

Viele kennen den Begriff der Emotionalen Intelligenz, den Goleman populär gemacht hat. Ursprünglich kam der Begriff allerdings von Mayer,/Salovay, die sich ausdrücklich auf Gardner´s Multiple Intelligenzen Theorie bezogen haben

Dabei stellt sich natürlich auch die Frage, was Emotionale Intelligenz von Emotionaler Kompetenz unterscheidet. In dem Blogbeitrag Kompetenz und Intelligenz – eine Gegenüberstellung wird der Unterschied deutlich, Dazu habe ich folgendes gefunden:

Emotionale Kompetenz meint die Fähigkeit, sich selbst in einem tieferen Sinne zu verstehen. In unserem emotionalen Ich drückt sich aus, wie wir gelernt haben, die Welt auszuhalten, bevor wir sie deuten und interpretieren. Wer emotional selbstreflexiv zu handeln versteht, hat tief durchdrungen, dass er sein Gegenüber nicht so zu sehen vermag, wie es ist, sondern nur so, wie er selbst gelernt hat, es zu spüren. Er fragt sich, was dieses ihm selbst über sich in Erinnerung ruft, und ist sich der Tatsache bewusst, dass die aderen nicht dafür verantwortlich sind, wie wir sie zu spüren vermögen. Der emotional kompetente Mensch ist in der Lage, sich den anderen mit seinen eigenen Gefühlen und Gewissheiten nicht  einfach zuzumuten, sondern den Ausdruck des Gegenübers immer wieder neu zu erspüren” (Arnold 2017).

Die These, dass es im Sinne der Multiplen Intelligenzen Theorie (Gardner) auch Multiple Kompetenzen geben sollte, die auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk zu beachten sind, habe ich in meiner Veröffentlichung weiter ausgeführt:

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Wissensmanagement: Kompetenzrad für Wissensmanager nach GfWM

Kompetenzrad eines Wissensmanagers (GfWM e. V. (2024): Wissensmanagement-Kompetenzkatalog | PDF)

Wissen, und der Umgang mit Wissen (Wissen managen, Wissens-System managen) sind in einem turbulenten Umfeld zu wichtigen Wettbewerbsfaktoren von Organisationen geworden. Dabei hat sich das Verständnis von und über Wissen mit der Zeit verändert. Siehe dazu beispielsweise Reflexive Modernisierung und “reflexives Wissen” als neue Wissensform.

Personen, die sich mit Wissen beruflich befassen wollen/sollen, müssen daher entsprechende Kompetenzen mitbringen, bzw. entwickeln. Die Gesellschaft für Wissensmanagement e.V. (GfWM e.V.) hat zu diesem Thema im Januar 2024 einen Wissensmanagement-Kompetenzkatalog (Version 2.2| PDF) veröffentlicht. In der dazugehörenden Excel-Datei (XLSX) können Sie Ihr SOLL- und IST-Profil erfassen. Ein Beispiel dazu sehen Sie in der Abbildung weiter oben, die aus dem Kompetenzkatalog entnommen ist.

Der eine oder andere Punkt irritiert mich hier allerdings. Beispielsweise werden die Begriffe “Fertigkeiten”, Fähigkeiten” und “Kompetenzen” in dem Beispiel-Kompetenzrad dargestellt, obwohl der Schluss von Persönlichkeitseigenschaften (Fähigkeiten/Fertigkeiten) möglicherweise falsch ist (vgl. Erpenbeck).

Weiterhin kommt der Begriff “Emotion” im gesamten Wissensmanagement-Kompetenzkatalog überhaupt nicht vor. Möglicherweise ist das Thema indirekt in den Kompetenzen zu finden, allerdings nicht so prominent, wie es sein sollte.

John Erpenbeck hat in seinen Forschungen dazu festgestellt, dass für den Kompetenzerwerb eine Emotionale Intelligenz/Kompetenz elementar ist. Siehe dazu auch Kompetenz und Intelligenz: Eine Gegenüberstellung. Das Konstrukt der Emotionalen Intelligenz geht dabei auf Salovey/Mayer (1990) zurück. Populär gemacht hat den Begriff Goleman mit seinen verschiedenen Veröffentlichungen.

Arnold, R. (2005:123) formuliert es so: “Emotional kompetent ist jemand, der um die ´Selbstgemachtheit´ emotionaler Reaktionen weiß, die Fülle möglicher Gefühlzustände aus eigenem Erleben kennt (´emotional literacy´) und über ´Techniken´ verfügt, diese mit situationsangemessenem Verhalten in Einklang zu bringen.”

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Künstliche Intelligenz – Menschliche Intelligenz – Intelligente Problemlösungen

In der heute sehr stark vernetzten Welt kommt es darauf an, Muster zu erkennen, um die anstehenden komplexen Problemlösungen zu entwickeln. die neuen Fragestellungen können oftmals nicht mehr mit den bisher so erfolgreichen Denkmustern gelöst werden. Das immer wieder propagierte neue Mindset integriert die alten Denkmuster und entwickelt diese weiter. Ein zentraler Punkt in vielfältig vernetzten Systemen ist das Erkennen von schwachen Signalen, oder von Mustern. Diese Eigenschaften werden der Künstlichen Intelligenz und der Menschlichen Intelligenz zugeschrieben. Im Zusammenspiel können dabei viele intelligente Problemlösungen generiert werden.

“Eine der zentralen Fragen der Zukunft könnte nicht sein, wie viele künstliche intelligente Lösungen in den Systemen stecken, sondern wie viel menschliche Intelligenz und welches Mindset und Bewusstsein vor dem Computer sitzt und wie beide miteinander in Beziehung stehen und verbunden sind” (Linder-Hofmann (2024): KI, agiles Mindset und integral -systemische Perspektiven. In: Bernert/Scheurer/Wehnes (Hrsg.): KI in der Projektwirtschaft).

Die Mustererkennung kann durch Maschinen wie der Künstlichen Intelligenz, oder durch den Menschen mit seinen besonderen Intelligenzen/Kompetenzen erfolgen. An dieser Stelle sollte allerdings auch geklärt werden, welche menschliche Intelligenz gemeint ist. Es gibt hier durchaus Ansätze die zeigen, das möglicherweise der immer noch favorisierte Intelligenz-Quotient (IQ) keine Passung zu dem hier kurz aufgezeigten Themenfeld hat. Siehe dazu auch
Künstliche Intelligenz und Menschliche Intelligenz
Intelligenztheorie: Anmerkungen zu Sternbergs Triarchischen Theorie und Gardners Multiple Intelligenzen Theorie
Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.