RAG: KI-Basismodelle mit eigener Wissensbasis verknüpfen

Gerade Kleine und Mittlere Unternehmen (KMU) können es sich oftmals nicht leisten, eigene Trainingsmodelle (Large Language Models) zu entwickeln. KMU greifen daher gerne auf bekannte Modelle wie ChatGPT usw. zurück.

Es wird allerdings gerade bei innovativen KMU immer klarer, dass es gefährlich sein kann, eigene Datenbestände in z.B. ChatGPT einzugeben. Da diese Modelle nicht transparent sind ist unklar, was mit den eigenen Daten passiert.

Eine Möglichkeit aus dem Dilemma herauszukommen ist, RAG (Retrieval-Augmented Generation) zu nutzen – also ein Basismodell mit einer internen Wissensbasis zu verknüpfen:

Retrieval-Augmented Generation (RAG): Bei RAG wird ein Basismodell wie GPT-4, Jamba oder LaMDA mit einer internen Wissensbasis verknüpft. Dabei kann es sich um strukturierte Informationen aus einer Datenbank, aber auch um unstrukturierte Daten wie E-Mails, technische Dokumente, Whitepaper oder Marketingunterlagen handeln. Das Foundation Model kombiniert die Informationen mit seiner eigenen Datenbasis und kann so Antworten liefern, die besser auf die Anforderungen des Unternehmens zugeschnitten sind” (heise business services (2024): KI für KMU: Große Sprachmodelle erfolgreich einsetzen – mit Finetuning, RAG & Co.).

Wir gehen noch einen Schritt weiter, indem wir (1) einerseits LocalAI und Open Source AI mit einem Assistenten nutzen, und (2) darüber hinaus mit Hilfe von Ollama und Langflow eigene KI-Agenten entwickeln, die auf Basis von Open Source AI Modellen und beliebig konfigurierbaren eigenen Input einen gewünschten Output generieren In dem gesamten Prozess bleiben alle Daten auf unserem Server.

Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Künstliche Intelligenz (KI oder AI: Artificial Intelligence) einzusetzen ist heute in vielen Organisationen schon Standard. Dabei nutzen immer noch viele die von den kommerziellen Anbietern angebotenen KI-Systeme. Dass das kritisch sein kann, habe ich schon in vielen Blogbeiträgen erläutert.

Wir wollen einen anderen Weg, aufzeigen, der die Digitale Souveränität für Organisationen und Privatpersonen ermöglicht: Open Source AI und eine Open Source Kollaborationsplattform. Siehe dazu Von der digitalen Abhängigkeit zur digitalen Souveränität.

Im ersten Schritt haben wir unsere NEXTCLOUD über einen ASSISTENTEN mit Künstlicher Intelligenz verknüpft, wobei alle Daten auf unserem Server bleiben. Siehe LocalAI (Free Open Source Software): Chat mit KI über den Nextcloud-Assistenten.

Im zweiten Schritt haben wir für die Entwicklung von AI-Agenten Langflow (Open Source) auf unserem Server installiert. Dabei ist es möglich, ChatGPT von OpenAI, oder über Ollama sehr viele unterschiedliche Open Source Modelle zu nutzen. Wir wollen natürlich den zweiten Weg gehen und haben daher Ollama auf unserem Server installiert.

Ollama Startseite auf unserem Server: Eigener Screenshot

In der Abbildung ist zu sehen, dass wir für den ersten Test zunächst vier Modelle installiert haben, inkl. DeepSeek-R1 und LLama 3.2. Demnächst werden wir noch weitere Modelle installieren, die wir dann in Langflow integrieren, um AI-Agenten zu entwickeln. In den kommenden Wochen werden wir über die Erfahrungen berichten.

AI Agents: Langflow (Open Source) auf unserem Server installiert

Das nächste große Ding in der KI-Entwicklung ist der Einsatz von KI-Agenten (AI Agents). Wie schon in vielen Blogbeiträgen erwähnt, gehen wir auch hier den Weg dafür Open Source zu verwenden. Bei der Suche nach entsprechenden Möglichkeiten bin ich recht schnell auf Langflow gestoßen. Die Vorteile lagen aus meiner Sicht auf der Hand:

(1) Komponenten können per Drag&Drop zusammengestellt werden.
(2) Langflow ist Open Source und kann auf unserem eigenen Server installiert werden. Alle Daten bleiben somit auf unserem Server.

Die Abbildung zeigt einen Screenshot von Langflow – installiert auf unserem Server.

Auf der linken Seite der Abbildung sind viele verschiedene Komponenten zu sehen, die in den grau hinterlegten Bereich hineingezogen werden können. Per Drag&Drop können INPUT-Komponenten und OUTPUT-Format für ein KI-Modell zusammengestellt – konfiguriert – werden. Wie weiterhin zu erkennen, ist standardmäßig OpenAI als KI-Modell hinterlegt. Für die Nutzung wird der entsprechende API-Schlüssel eingegeben.

Mein Anspruch an KI-Agenten ist allerdings, dass ich nicht OpenAI mit ChatGPT nutzen kann, sondern auf unserem Server verfügbare Trainingsdaten von Large Language Models (LLM) oder Small Language Models (SML), die selbst auch Open Source AI sind. Genau diesen Knackpunkt haben wir auch gelöst. Weitere Informationen dazu gibt es in einem der nächsten Blogbeiträge. Siehe in der Zwischenzeit auch

Free Open Source Software (FOSS): Eigene LocalAI-Instanz mit ersten drei Modellen eingerichtet

LocalAI: Aktuell können wir aus 713 Modellen auswählen

Digitale Souveränität: Europa, USA und China im Vergleich