Global Innovation Index 2025: Deutschland nicht mehr in den TOP 10

Quelle: Global Innovation Index 2025

Der aktuelle Global Innovation Index 2025 zeigt, dass Deutschland im Ranking nicht mehr zu den TOP 10 zählt (Abbildung). Im internationalen Vergleich rutscht Deutschland etwas ab. Im Global Innovation Index 2017 war Deutschland im Vergleich zu 2016 einen Platz nach oben gerutscht, und belegte immerhin Platz 9.

Schon 2010 hatte ich in einem Blogbeitrag etwas zynisch angemerkt, dass wir in Deutschland mehr Innovationspreise als wirkliche Innovationen haben.

Vergleichen wir uns in Deutschland mit anderen Ländern in der EU, oder mit den eigenen Innovations-Kennzahlen der vergangenen Jahre, sieht es dagegen immer noch recht gut aus. Es ist halt immer die Frage, welche Zahlen ich heranziehe, um die Innovationskraft eines Landes zu bewerten. Es ist eben – frei nach Einstein – alles relativ.

Ein wichtiges Kriterium in unseren Regionen ist das Europäische Paradox. Gemeint ist, dass wir in Europa recht viel Geld in die Forschung stecken, doch im Verhältnis dazu recht wenige Innovationen generieren. Siehe dazu Produkte und Dienstleistungen als Mehrwert für Kunden: Warum funktioniert das einfach nicht?

Doch was können wir tun, um diese Entwicklung zu korrigieren?

In Zeiten von Künstlicher Intelligenz beispielsweise sollte es darum gehen, die bisher nicht erfüllten Bedürfnisse von Menschen endlich in den Mittelpunkt zu stellen, und geeignete Produkte und Dienstleistungen auf den Markt zu bringen.

“There is still an invisible hand behind supply-side reform. Adam Smith argued that the invisible hand that drives markets is capital, while the invisible hand of supply that drives innovation is demand. Generally speaking, the “inconvenience” in the daily life of the people can be used as the traction of technological development. In the AI technology market, enterprises that see fundamental needs can have a large number of applications for their products” (Wu 2025).

UNESCO (2025): AI and the future of education

Ausschnitt von der Titelseite

Es ist deutlich zu erkennen, dass die Entwicklungen im Bereich der Künstlichen Intelligenz Auswirkungen auf den Bildungssektor haben. Die Frage ist nur, ob die sich daraus entstehenden Fragen nur aus der Perspektive von Tech-Unternehmen beantwortet werden sollten. Es ist meines Erachtens in diesem Zusammenhang gut, dass sich die UNESCO diesem Thema ausgewogen und unter einer globalen Perspektive angenommen hat.

UNESCO (2025): AI and the future of education. Disruptions, dilemmas and directions | LINK

Gleich im einleitenden Summary weist die UNESCO darauf hin, dass ein Drittel der Weltbevölkerung offline ist. Das wiederum hat Auswirkungen darauf, welches Wissen, welche Werte und welche Sprachen in den KI-Systemen, und somit auch in der KI-unterstützten Bildung, dominieren.

“Artificial intelligence (AI) is reshaping the way we learn, teach and make sense of the world around us, but it is doing so unequally. While one-third of humanity remains offline, access to the most cutting-edge AI models is reserved for those with subscriptions, infrastructure and linguistic advantage. These disparities not only restrict who can use AI, but also determine whose knowledge, values and languages dominate the systems that increasingly influence education. This anthology explores the philosophical, ethical and pedagogical dilemmas posed by disruptive influence of AI in education” (UNESCO 2025).

KI-Modelle: Von “One Size Fits All” über Variantenvielfalt in die Komplexitätsfalle?

In letzter Zeit gibt es immer mehr Meldungen, dass der Einsatz von Künstlicher Intelligenz in allen gesellschaftlichen Bereichen steigt. Doch nicht immer sind KI-Projekte erfolgreich und werden daher eingestellt – was bei neuen Technologien ja nicht ungewöhnlich ist. Siehe dazu beispielsweise Künstliche Intelligenz: 40% der Projekte zu Agentic AI werden wohl bis Ende 2027 eingestellt (Gartner).

Dennoch ist deutlich zu erkennen, dass es immer mehr Anbieter in allen möglichen Segmenten von Künstlicher Intelligenz – auch bei den Language Models – gibt. Wenn man sich alleine die Vielzahl der Modelle bei Hugging Face ansieht: Heute, am17.09.2025, stehen dort 2,092,823 Modelle zur Auswahl, und es werden jede Minute mehr. Das erinnert mich an die Diskussionen auf den verschiedenen (Welt-) Konferenzen zu Mass Customization and Personalization. Warum?

Large Language Models (LLM): One Size Fits All
Wenn es um die bei der Anwendung von Künstlicher Intelligenz (GenAI) verwendeten Trainingsmodellen geht, stellt sich oft die Frage, ob ein großes Modell (LLM: Large Language Model) für alles geeignet ist – ganz im Sinne von “One size fits all”. Diese Einschätzung wird natürlich von den Tech-Unternehmen vertreten, die aktuell mit ihren Closed Source Models das große Geschäft machen, und auch für die Zukunft wittern. Die Argumentation ist, dass es nur eine Frage der Zeit ist, bis das jeweilige Large Language Model die noch fehlenden Features bereitstellt – bis hin zur großen Vision AGI: Artificial General Intelligence. Storytelling eben…

Small Language Models (SLM): Variantenvielfalt
In der Zwischenzeit wird immer klarer, dass kleine Modelle (SLM) viel ressourcenschonender, in speziellen Bereichen genauer, und auch wirtschaftlicher sein können. Siehe dazu Künstliche Intelligenz: Vorteile von Small Language Models (SLMs) und Muddu Sudhakar (2024): Small Language Models (SLMs): The Next Frontier for the Enterprise, ForbesLINK.

Komplexitätsfalle
Es wird deutlich, dass es nicht darum geht, noch mehr Möglichkeiten zu schaffen, sondern ein KI-System für eine Organisation passgenau zu etablieren und weiterzuentwickeln. Dabei sind erste Schritte schon zu erkennen: Beispielsweise werden AI-Router vorgeschlagen, die verschiedene Modelle kombinieren – ganz im Sinne eines sehr einfachen Konfigurators. Siehe dazu Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren.

Mit Hilfe eines KI-Konfigurators könnte man sich der Komplexitätsfalle entziehen. Ein Konfigurator in einem definierten Lösungsraum (Fixed Solution Space) ist eben das zentrale Element von Mass Customization and Personalization.

Die Lösung könnte also sein, massenhaft individualisierte KI-Modelle und KI-Agents dezentralisiert für die Allgemeinheit zu schaffen. Am besten natürlich alles auf Open Source Basis – Open Source AI – und für alle in Repositories frei verfügbar. Auch dazu gibt es schon erste Ansätze, die sehr interessant sind. Siehe dazu beispielsweise (Mass) Personalized AI Agents für dezentralisierte KI-Modelle.

Genau diese Überlegungen erinnern – wie oben schon angedeutet – an die Hybride Wettbewerbsstrategie Mass Customization and Personalization. Die Entgrenzung des definierten Lösungsraum (Fixed Solution Space) hat dann weiter zu Open Innovation (Chesbrough und Eric von Hippel) geführt.

Barbara Geyer: Künstliche Intelligenz und Lernen

Barbara Geyer in diesem LinkedIn-Beitrag (August 2025)

In dem LinkedIn-Beitrag von Barbara Geyer (Hochschule Burgenland) erläutert die Autorin die Abbildung zu KI und Lernen noch etwas genauer. Es ist farblich gut zu erkennen, in welchen Bereichen Künstliche Intelligenz viel helfen kann (grün), begrenzt helfen kann (orange) und nicht helfen kann (rot). Dabei orientiert sich die Autorin an dem Helmke-Modell, einem Angebot-Nutzungs-Modell, und leitet die folgende zentrale Botschaft ab:

KI revolutioniert das ANGEBOT (Materialien, Tests, Feedback) aber LERNEN SELBST bleibt menschlich (Denken, Verstehen, Motivation).

In den Kommentaren zu dem LinkedIn-Beitrag gibt es viel Zustimmung, doch auch kritische Stimmen, die die Möglichkeiten Künstlicher Intelligenz in Lernprozessen hier eher unterschätzt sehen.

Ich finde diese Grafik zunächst einmal gut, da sie dazu anregt, darüber nachzudenken, was wir unter Lernen, bzw. unter menschlichem Lernen, verstehen, und wie wir damit umgehen wollen. Hinzu kommt dann noch die Einordnung Künstlicher Intelligenz als eine weitere Quelle zur Ermöglichung von Lernen – ganz im Sinne einer Ermöglichungsdidaktik. Siehe dazu auch Ist Wissenstransfer in ihrer Organisation wichtig? Wenn ja: Befassen Sie sich mit Erwachsenenbildung!

LangFlow: Per Drag & Drop KI-Agenten auf dem eigenen Server entwickeln und testen

Screenshot von unserer LangFlow-Installation (Simple Agent)

In dem Beitrag Künstliche Intelligenz: Mit einem AI Router verschiedene Modelle kombinieren wird erläutert, wie Modelle – abhängig von der Eingabe – so kombiniert werden können, dass ein qualitativ gutes Ergebnis herauskommt.

Der nächste Schritt wäre, beliebig viele KI-Modelle in einem Framework zu entwickeln und zu koordinieren. Die Plattform LangChain bietet so eine professionelle, und somit auch anspruchswolle Möglichkeit.

“LangChain is an incredibly valuable tool for linking up chains of models and defining steps for how an output from a model should be handled before being sent to a different model (or often, the same model with a different prompt) for a new step in a workflow” (Thomas et al. 2025).

Wenn es etwas einfacher sein soll, bietet sich LangFlow an, bei dem mit einfachen Mitteln per Drag & Drop KI-Agenten in Zusammenspiel mit verschiedenen Modellen konfiguriert werden können.

Wir haben LangFlow auf unserem Server installiert (Open Source) und können nun KI-Agenten für verschiedene Anwendungen entwickeln und testen. Die Abbildung zeigt einen Screenshot der Startseite, wenn man einen einfachen Agenten entwickeln möchte. Auf der linken Seite können sehr viele Optionen ausgewählt werden, in dem grau hinterlegten Bereich werden diese dann per Drag & Drop zusammengestellt. Die farbigen Verbindungslinien zeigen, welche Optionen miteinander kombiniert werden können. Abschließend kann im anwählbaren Playground das Ergebnis beurteilt werden.

Dabei bietet LangfFlow auch die Möglichkeit, eigene Daten, oder auch externe Datenquellen einzubinden – alles per Drag & Drop. Weiterhin haben wir den Vorteil, dass alle generierten Daten auf unserem Server bleiben.

Künstliche Intelligenz, Wissen und kritisches Denken

Der Wissensbegriff hat sich in den letzten Jahrzehnten verändert, und damit auch erweitert. Arnold hat beispielsweise von einem neuen Wissensbegriff gesprochen und plädiert für eine Art von Wissenskompetenz.

Mit den Möglichkeiten der Künstlichen Intelligenz wird der Umgang mit Wissen noch dynamischer – vormals eher personales Wissen wird immer mehr zu einem öffentlichen Wissen. Dabei ist bemerkenswert, dass die Menschen den Ergebnissen der KI-Modellen durchaus vertrauen, obwohl diese nachweislich fehlerhaft sind. Siehe dazu Künstliche Intelligenz: Halluzinationen und der Bullshit-Faktor – eine Art Künstliche Dummheit? Dieses sehr unkritische Verhalten führt zu einer Entwertung des personalen Wissens

“Menschen ziehen sich infolge von KI zunehmend aus der Generierung personalen Wissens zurück und begnügen sich mit der Überwachung und Validierung KI-generierten öffentlichen Wissens. Der Einsatz von KI und ein übermäßiges Vertrauen in die Qualität KI generierter Inhalte reduzieren zudem die Bereitschaft zum kritischen Denken. Mit wachsendem Vertrauen in KI verschlechtert sich kritisches Denken, während Zuversicht in Bezug auf die eigene Expertise kritisches Denken stärkt” (Reinmann, Preprint. Erscheint in: Dittler, U. & Kreidl, C. (in Druck). Fragen an die Hochschuldidaktik der Zukunft. Schäffer-Poeschel).

Die stärkere Nutzung der KI-Möglichkeiten führt also letztendlich zur Reduzierung des kritischen Denkens, wobei das Vertrauen in die eigene Expertise eher das kritische Denken fördert.

Wir sollten daher nicht “blind” den Verheißungen der Tech-Industrie hinterherrennen, sondern auf Basis unserer eigenen Expertise durchaus kritisch mit den Ergebnissen der KI umgehen. Siehe dazu beispielsweise Kritisches Denken genauer betrachtet. Darin werden u.a. die affirmative (bestätigende) Wissenskonstruktion und das kritische Denken gegenübergestellt.

(Mass) Personalized AI Agents für dezentralisierte KI-Modelle

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Es wird von Tag zu Tag deutlicher: Mit der zunehmenden Verbreitung von Künstlicher Intelligenz (AI: Artificial Intelligence) kommen die zentralen, großen KI-Modelle (Large Language Models) mit ihrem Mangel an Transparenz und ihrem “laxen” Umgang mit dem Urheberrecht oder auch mit dem Datenschutz, an Grenzen.

Einzelne Personen, Organisationen und auch Öffentliche Verwaltungen halten ihre Daten entsprechend zurück, wodurch Kooperation, Kollaboration und letztendlich auch Innovation behindert wird. Der Trend von den LLM (Large Language Models), zu Small Language Models (SLM), zu KI-Agenten, zusammen mit dem Wunsch vieler auch die eigenen Daten – und damit die eigene Expertise – für KI-Anwendungen zu nutzen, führt zu immer individuelleren, customized, personalized Modellen und letztendlich zu Personalized AI-Agents.

“Personal agents: Recent progress in foundation models is enabling personalized AI agents (assistants, co-pilots, etc.). These agents require secure access to private user data, and a comprehensive understanding of preferences. Scaling such a system to population levels requires orchestrating billions of agents. A decentralized framework is needed to achieve this without creating a surveillance state” (Singh et al. 2024).

Forscher am Massachusetts Institute of Technology (MIT) haben diese Entwicklungen systematisch analysiert und sind zu dem Schluss gekommen, dass es erforderlich ist, Künstliche Intelligenz zu dezentralisieren: Decentralized AI.

Mein Wunsch wäre es in dem Zusammenhang, dass alle Anwendungen (Apps, Tools etc.) einzelnen Personen und Organisationen als Open Source zur Verfügung stehen, ganz im Sinne von Mass Personalization – nur dass Mass Personalization für KI-Agenten nicht von Unternehmen ausgeht und auf den Konsumenten ausgerichtet ist! Das hätte eine sehr starke Dynamik von Innovationen zur Folge, die Bottom Up erfolgen und die Bedürfnisse der Menschen stärker berücksichtigen.

KI-Agenten im Projektmanagement

Künstliche Intelligenz kann ganz generell in vielen Bereichen einer Organisation eingesetzt werden – natürlich auch im Projektmanagement. Zu KI im Projektmanagement gibt es in der Zwischenzeit viele Beiträge. Siehe dazu beispielsweise auch Künstliche Intelligenz (KI) im Projektmanagement: Routine und Projektarbeit.

In der Zwischenzeit geht es in der Diskussion zu KI auch immer stärker um die Frage, wie KI Agenten im Projektmanagement genutzt werden können. Dazu gibt es den Beitrag KI-Agenten im Projektmanagement: So unterstützen digitale Rollen den Projektalltag von Jörg Meier, vom 15.07.2025 im GPM Blog. Darin werden erste gute Hinweise gegeben. Dennoch:

Ich hätte mir hier gewünscht, dass der Author auch auf die Problematik der Nutzung von Closed Sourced Modellen wie ChatGPT oder Gemini hinweist. Ausgewählte KI Modelle sollten möglichst “wirklich” Open Source AI (Definition aus 2024) sein. Es wäre m.E. auch die Aufgabe der GPM die Digitale Souveränität insgesamt stärker bewusst zu machen. Siehe dazu beispielsweise auch Digitale Souveränität: Souveränitätsscore für KI Systeme.

Dass KI Agenten gerade in der Software-Entwicklung erhebliche Potenziale erschließen können, wird in diesem Beitrag deutlich: The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen.

NANDA – die Idee eines Open Agentic Web

Nanda Roadmap (Quelle: https://nanda.media.mit.edu/)

Mit KI Agenten (AI Agents) ist es möglich, in der Geschäftswelt vielfältige Prozesse zu optimieren, oder innovative Prozesse, Produkte und Dienstleistungen zu generieren, die bisher aus den verschiedensten Gründen nicht möglich waren. Dazu zählen oftmals nicht verfügbare Daten und die dazugehörenden Kosten.

Auf Basis dieser Entwicklungen können wir in Zukunft immer stärker von einer Agentenbasierten Wirtschaft sprechen – Agentic Economy (Siehe Abbildung). Dabei geht es um die Nutzung von KI-Agenten in Unternehmen oder in ganzen Branchen. Siehe dazu The Agent Company: KI-Agenten können bis zu 30% der realen Aufgaben eines Unternehmens autonom übernehmen oder auch Künstliche Intelligenz lässt Mass Customization in einem anderen Licht erscheinen.

Denken wir etwas weiter, so müssen in Zukunft auch immer stärker KI-Agenten miteinander kommunizieren, also von Agent zu Agent – A2A. Passiert das zwischen sehr vielen Agenten eines Wirtschaftssystems, bzw. einer ganzen Gesellschaft, entsteht so etwas wie eine Agentic Society.

Das Projekt NANDA hat sich in dem Zusammenhang das Ziel gesetzt, diese Entwicklung mit einem Open Agentic Web zu unterstützen:

“Imagine billions of specialized AI agents collaborating across a decentralized architecture. Each performs discrete functions while communicating seamlessly, navigating autonomously, socializing, learning, earning and transacting on our behalf” (Source).

Das vom MIT initiierte Projekt NANDA arbeitet in Europa u.a. mit der TU München und der ETH Zürich zusammen. Das Ziel ist, alles Open Source basiert zur Verfügung zu stellen..

Ich bin an dieser Stelle immer etwas vorsichtig, da beispielsweise OpenAI auch beim Start das Ziel hatte, KI als Open Source zur Verfügung zu stellen. In der Zwischenzeit wissen wir, dass OpenAI ein Closed Source Model, bzw. ein Open Weights Model ist, und kein Open Source Model. Siehe dazu Das Kontinuum zwischen Closed Source AI und Open Source AI.

KI-Modelle: Monitoring einer Entwicklungsumgebung

Using watsonx.governance to build a dashboard and track a multimodel
deployment environment (Thomas et al. 2025)

In verschiedenen Beiträgen hatte ich beschrieben, was eine Organisation machen kann, um KI-Modelle sinnvoll einzusetzen. An dieser Stelle möchte ich nur einige wenige Punkte beispielhaft dazu aufzählen.

Zunächst können LLM (Large Language Models) oder SLM (Small Language Models) eingesetzt werden – Closed Sourced , Open Weighted oder Open Source. Weiterhin können KI-Modelle mit Hilfe eines AI-Routers sinnvoll kombiniert, bzw. mit Hilfe von InstructLab mit eigenen Daten trainiert werden. Hinzu kommen noch die KI-Agenten – aus meiner Sicht natürlich auch Open Source AI.

Das sind nur einige Beispiele dafür, dass eine Organisation aufpassen muss, dass die vielen Aktivitäten sinnvoll und wirtschaftlich bleiben. Doch: Wie können Sie das ganze KI-System verfolgen und verbessern? In der Abbildung sehen Sie ein Dashboard, dass den Stand eines KI-Frameworks abbildet. Die Autoren haben dafür IBM watsonx Governance genutzt.

“Our dashboard gives us a quick view of our environment. There are LLMs from OpenAI, IBM, Meta, and other models that are in a review state. In our example, we have five noncompliant models that need our attention. Other widgets define use cases, risk tiers, hosting locations (on premises or at a hyper scaler), departmental use (great idea for chargebacks), position in the approval lifecycle, and more” (Thomas et al. 2025).

Die Entwicklungen im Bereich der Künstlichen Intelligenz sind vielversprechend und in ihrer Dynamik teilweise auch etwas unübersichtlich. Das geeignete KI-Framework zu finden, es zu entwickeln, zu tracken und zu verbessern wird in Zukunft eine wichtige Aufgabe sein.