Sind wir nicht intelligent genug, um zu wissen, was Intelligenz ist?

Image by Gerd Altmann from Pixabay

Der Intelligenz-Begriff wird schon fast inflationär verwendet. Es geht um „intelligente Produkte“, „Künstliche Intelligenz“, und im Zusammenhang mit Menschen um einen scheinbar messbaren Intelligenz-Quotienten (IQ).

Dass die Messbarmachung der Intelligenz in Zeiten von Künstlicher Intelligenz tückisch sein kann, habe ich in dem Beitrag OpenAI Model „o1“ hat einen IQ von 120 – ein Kategorienfehler? erläutert. Hans Markus Enzensberger hat sich auch mit der IQ-Messung intensiv befasst, und ist zu folgendem Schluss gekommen:

Enzensberger: (…) Das ist genauso ein heikles Wort, kernprägnant und randunscharf, wie „Intelligenz“. Ich habe mich mit Fragen der IQ-Messung beschäftigt. Die Quantifizierung des IQ ist schwierig. Wir sind einfach nicht intelligent genug, um zu wissen, was Intelligenz ist. Als weitere Falle kommt die Subjektivität hinzu. Intelligenztests messen das, was der Tester darunter versteht. Ein Indio aus dem Amazonas wird dabei ebenso schlecht abschneiden wie umgekehrt ein Psychologe, wenn er sich im Regenwald einer Prüfung seiner Fähigkeiten unterzieht“ (Pöppel/Wagner 2012:91).

Es kommt somit darauf an, was wir unter „Intelligenz“ verstehen (wollen). Es ist eine Annahme, ein Konstrukt, das zu der Lebenswirklichkeit dann eine Passung hat – oder eben nicht.

Es scheint so, dass die Bestimmung (Messung) eines Intelligenz-Quotienten in dem Umfeld einer Industriegesellschaft geeignet war. In den letzten Jahrzehnten hat sich das Umfeld allerdings sehr dynamisch verändert, sodass sich möglicherweise auch das Intelligenz-Verständnis erweitern sollte, damit es wieder eine bessere Passung zum komplexen Umfeld mit seiner Lebenswirklichkeit hat.

Meines Erachtens kann es daher Sinn machen, das Verständnis der Menschlichen Intelligenz im Sinne von Multiplen Intelligenzen nach Howard Gardner zu erweitern – auch in Bezug zur Künstlichen Intelligenz. Siehe dazu auch 

Künstliche Intelligenz – Menschliche Kompetenzen: Anmerkungen zu möglichen Kategorienfehler

Über den Unsinn von Intelligenztests

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Künstliche Intelligenz: Wenn die Lösung das Problem ist

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Aktuell kann man den Eindruck gewinnen, dass alle Aufgaben oder Probleme mit Künstlicher Intelligenz angegangen werden, um Lösungen zu generieren.

Im Zusammenspiel zwischen Lösung und Problem hat Paul Watzlawick auf die Fehllogik und die zirkulare Kausalität hingewiesen.

Das oft genannte Beispiel von jemanden mit Schlafproblemen, der versucht, krampfhaft einzuschlafen, und damit die Situation eher verschlechtert, illustriert das etwas.

„Was Menschen tun, um ein Problem zu lösen, ist oft genau das, was das Problem hervorruft“ nach Paul Watzlawick, zitiert in Hartkemeyer/Freeman/Dhority (2006): Miteinander Denken. Das Geheimnis des Dialogs,

Ich frage mich: Kann es sein, dass die Nutzung der bekannten KI-Modelle nicht nur zur Lösung eines Problems führt (führen kann), sondern diese Problemlösung das ursprüngliche Problem noch verstärkt?

In einer abgewandelten Eigenfassung des Textes von Paul Watzlawick würde das wie folgt aussehen:

„Was Menschen tun, um ein Problem zu lösen (RF: z.B. ChatGPT nutzen…), ist oft genau das, was das Problem hervorruft (RF: z.B. ChatGPT nutzen….. ) – frei von mir nach Paul Watzlawick geändert. Ich hoffe er sieht mir das nach.

Es ist gut, wenn wir die enormen Möglichkeiten von KI nutzen, und kritisch hinterfragen (Kritisches Denken)

Mass Customization und Quantenmechanik

In verschiedenen Blogbeiträgen habe ich immer wieder darauf hingewiesen, dass wir uns von den in vielen Bereichen diskutierten Dichotomien (Entweder-oder) verabschieden sollten. Im Wissensmanagement beispielsweise haben wir es mit den beiden Polen implizites Wissen oder explizites Wissen zu tun. Zwischen beiden Polen gibt es allerdings ein Kontinuum des „sowohl-als-auch“. Ähnlich sieht es in anderen Bereichen aus.

Im Innovationsmanagement kennen wir die Extreme Closed Innovation oder Open Innovation. Beim Projektmanagement gibt es nicht nur das klassische Projektmanagement oder das agile Projektmanagement, sondern zwischen beiden Polen ein Kontinuum. Ähnlich sieht es bei der Künstlichen Intelligenz aus, wo es von Closed AI Models über Open Weight AI Models bis zu Open Source AI Models auch ein Kontinuum der Möglichkeiten gibt.

Diese Entwicklung deutet schon darauf hin, dass es in vielen Bereichen nicht mehr um ein „entweder-oder“, sondern um ein angemessenes „sowohl-als-auch“ geht. Vor über 30 Jahren hat B. Joseph Pine II schon darauf hingewiesen, und dabei eine Verbindung von der Quantenmechanik zu Mass Customization als hybride Wettbewerbsstrategie hergestellt:

„Today management has much the same problem: We still build most of our models around false dichotomies. To name but a few, we speak of strategy versus operations, cost versus quality, and centralized versus decentralized. The way out of this dilemma for scientist, finally, was to abandon the perspective of irreconcilable opposites, and to embrace interpretations that accept contradictions without trying to resolve them. Quantum mechanics does that in physics, mass customization does that in business“ (Pine 1993).

Die hybriden Möglichkeiten zur Schaffung von Werten für Kunden (User) sind heute (nach mehr als 30 Jahre nach der Veröffentlichung) in vielen Organisationen immer noch nicht bekannt.

Auf der nächsten MCP 2026 – Konferenz, im September in Balatonfüred (Ungarn), haben Sie die Chance, mit führenden Forschern und Praktikern über die Themen Mass Customization, Mass Personalization und Open Innovation zu sprechen.

Als Initiator der Konferenzreihe stehe ich Ihnen gerne für weitere Fragen zur Verfügung.

Die negativen und positiven Seiten von Routine

Image by Foundry Co from Pixabay

Der Trend in der Arbeitswelt geht dahin, Routinetätigkeiten zu reduzieren, um z.B. mehr Projekte durchführen zu können. Dabei werden Routinetätigkeiten oftmals durch Technologien ersetzt – ganz im Sinne der Wirtschaftlichkeit. Es ist verständlich, dass wir keine stupiden Handgriffe in der Produktion oder in der Verwaltung durchführen wollen.

Andererseits gibt es ja auch die liebgewonnenen Routinen, wie der morgendliche Kaffee, das gemeinsame Abendessen mit der Familie, der regelmäßige Sport mit anderen am Wochenende, usw. Solche Routinen sind eher positiv besetzt, da wir uns dabei wohl fühlen.

Betrachten wir also die Routine etwas umfassender, so können wir erkennen, dass Routine negative und positive Seiten hat. In der Geschichte sind daher auch zwei unterschiedliche Perspektiven zu erkennen:

„Die positive Seite der Routine wurde in Diderots großer Encyclopédie (1751-1772) dargestellt, die negative Seite der geregelten Arbeitszeit zeigte sich äußerst dramatisch in Adam Smiths Der Wohlstand der Nationen (1776). Diderot war der Meinung, die Arbeitsroutine könne wie jede andere Form des Auswendiglernens zu einem Lehrmeister der Menschen werden. Smith glaubte, Routine stumpfe den Geist ab. Heute steht die Gesellschaft auf der Seite von Smith. (…) Das Geheimnis der industriellen Ordnung lag im Prinzip in der Routine“ (Sennett 2002)

Routine ist also per se nicht geistlos, sie kann erniedrigen, sie kann aber auch beschützen. Routine kann die Arbeit zersetzen, aber auch ein Leben zusammenhalten (vgl. dazu Sennett 2002).

Diese Gedanken führen zwangläufig zu der aktuellen Diskussion um KI-.Agenten, die im einfachsten Fall darauf ausgerichtet sind, Abläufe zu automatisieren. Siehe dazu beispielsweise Mit Langflow einen einfachen Flow mit Drag & Drop erstellen.

Berücksichtigen wir die weiter oben von Sennett zusammengefassten Hinweise zur Routine, so sollten wir genau überlegen, welche Routinetätigkeiten durch Künstliche Intelligenz ersetzt werden, und welche Routinetätigkeiten eher nicht. Routine kann eben auch in einem turbulenten gesellschaftlichen Umfeld (emotional) stabilisieren, ja sogar schützen.

Von der Wissensgesellschaft über die Kompetenzgesellschaft zur Wertegesellschaft?

Von der eher landwirtschaftlich geprägten Gesellschaft, über die Industriegesellschaft und einer in den 1960er Jahren propagierten Wissensgesellschaft sind wir nach Erpenbeck/Heyse (2019) in einer Kompetenzgesellschaft gelandet. Siehe dazu auch Der Strukturbruch zwischen einfacher und reflexiver Modernisierung.

Kompetenzen als Selbstorganisationsdispositionen enthalten nach Erpenbeck (2012) „konstitutiv interiorisierte Regeln, Werte und Normen als Kompetenzkerne“.

Wenn Werte gleichzeitig als Ordner sozialer Komplexität angesehen werden können, liegt der Schluss nahe, dass wir uns stärker zu einer Art Wertegesellschaft entwickeln.

Da der Kern von Kompetenz also auch Werte beinhaltet, ist eine Kompetenzgesellschaft auch in gewisser Weise eine Wertegesellschaft.

Die Wertesystem der Europäischen Union ist die Basis für unser Zusammenleben – auch in Bezug auf Künstliche Intelligenz, oder in Abgrenzung zu anderen Wertesystemen weltweit.

Oxford Insights (2025): Government AI Readiness Index 2025

Quelle: https://oxfordinsights.com/ai-readiness/government-ai-readiness-index-2025/

Im Dezember 2025 hat Oxford Insights den Government AI Readiness Index 2025 veröffentlicht. Darin wurde die Fähigkeit von 195 Regierungen bewertet, Künstliche Intelligenz zum Wohle der Öffentlichkeit einzusetzen:

„This year, we assess 195 governments worldwide by their capacity to harness AI to benefit the public“ (ebd.).

Es wird deutlich, dass wir in einer bi-polaren Welt leben, wenn es um Künstliche. Intelligenz geht. Die beiden Pole sind dabei die USA und China.

Dennoch ist auch ersichtlich, dass sich sehr viele regionale und nationale Initiativen damit befassen, wie die Möglichkeiten der Künstlichen Intelligenz für eine Gesellschaft nutzbar gemacht werden können.

„McKinsey just killed Agile“ – eine interessante Perspektive

Source: Montagne, J. McKinsey just killed Agile,, 26.12.2025

In der Softwareentwicklung war es schon früh klar, dass Projekte mit unklaren Anforderungen anders abgewickelt werden müssen, als gut planbare Projekte. Aus diesen Überlegungen heraus hat sich das Agile Manifest ergeben, und haben sich verschiedene Vorgehensmodelle entwickelt, wie z.B. KANBAN in der IT, Scrum oder auch Design Thinking.

Es wundert weiterhin nicht, dass Künstliche Intelligenz rasch in der Softwareentwicklung – z.B. auch im Scrum Framework – angewendet wurde, und auch noch wird. An dieser Stelle wird klar, dass bestehende Prozesse mit KI effizienter durchgeführt werden sollen. In dem Beitrag von Montagne (2025) wird in Bezug auf eine McKinsey-Studie erwähnt, dass durch diese Vorgehensweise durchaus Produktivitätsvorteile in Höhe von 10-15% erzielt werden können.

„Old Model (Standard Agile + AI): ~10-15% productivity gain“ (ebd.).

Demgegenüber weist Montagne allerdings auch darauf hin, dass durch eine andere Vorgehensweise – also ohne das Scrum Framework – plus KI ganz andere Produktivitätsvorteile erzielt werden können.

„New Model (Small Pods + Agentic Workflows): Transformational gains (500%+)“ (ebd.).

Die Abbildung weiter oben zeigt in der Gegenüberstellung die immensen Vorteile einer Vorgehensweise, die sich von Scrum unterscheidet und Agentic AI mit Kiro nutzt.

Es stellt sich natürlich gleich die Frage, ob dieses Learning aus der Softwareentwicklung auch auf andere Bereiche übertragbar ist. Antwort: Ja, das ist es.

In dem Blogbeitrag Warum wird GESCHÄFTSMODELL + AI nicht ausreichen? habe ich die Gründe dafür beschrieben.

Added Values: Nutzendimensionen, Wert und Werte

Krieg/Groß/Bauernhansl (2024) (Hrsg.): Einstieg in die Mass Personalization. Perspektiven für Entscheider

Wenn es um den Nutzen, oder den Wert, eines Produktes oder einer Dienstleistung geht, sollten grundsätzlich zwei Punkte beachtet werden.

(1) Die verschiedenen Dimensionen von Nutzen (Added Values)
In der Abbildung ist zu erkennen, dass Added Values fünf Dimensionen beinhalten. Neben dem funktionalen Nutzen, sind das natürlich der wirtschaftliche Nutzen, ein prozessoraler Nutzen und ein emotionaler Nutzen, Die Dimension, die stärker in den Fokus rücken sollte, ist der soziale Nutzen (eigene Hervorhebung in der Abbildung). Am Beispiel der Anwendung von Künstlichen Intelligenz wird deutlich, dass der Fokus in der aktuellen Diskussion zu sehr auf dem wirtschaftlichen Nutzen liegt, und zu wenig den sozialen Nutzen thematisiert.

(2) Nutzen, Wert und Werte
Bei einer ausgewogenen Betrachtung zur Nutzung Künstlicher Intelligenz auf der persönlichen Ebene, auf der Team-Ebene, auf der organisationalen Ebene oder auf gesellschaftlicher Ebene können Werte als Ordner dienen. „Der Begriff »Werte« unterscheidet sich vom Begriff »Wert« dadurch, dass der erste Begriff die Gründe beschreibt, warum etwas für jemanden wichtig ist. Werte repräsentieren normative Grundlagen, die als Leitprinzipien für individuelles Verhalten und gesellschaftliche Strukturen dienen. Sie bilden die Basis für die Bewertung von Wert und beeinflussen die Art und Weise, wie Individuen und Gesellschaften Güter, Dienstleistungen oder Handlungen priorisieren“ (Hämmerle et al. 2025, Fraunhofer HNFIZ).

Siehe dazu auch

Künstliche Intelligenz und Werte für das Zusammenleben in der Europäischen Union

Agile Organisation: Werte und Prinzipien als Hebelwirkung

Wirkungstreppe bei Not-for-Profit-Projekten: Output, Outcome und Impact

MCP: Konferenz zu Mass Customization and Personalization im September 2026

Mass Intelligence: Wenn mehr als 1 Mrd. Menschen Zugang zu leistungsfähiger KI haben

Conceptual technology illustration of artificial intelligence. Abstract futuristic background

Wenn wir uns die Entwicklungen der Künstlichen Intelligenz in der letzten Zeit ansehen, so fällt auf, dass es mehrere Trends gibt.

Neben den dominierenden wenigen großen Large Language Models (LLMs) der Tech-Konzerne gibt es immer mehr kleine Modelle (Small Language Models), die je nach Anwendungsfall ausgewählt werden können. Solche SLM sind flexibler, kostengünstiger und in bestimmten Bereichen sogar besser. Siehe dazu auch KI-Modelle: Von „One Size Fits All“ über Variantenvielfalt in die Komplexitätsfalle?

Weiterhin wird für solche Problemlösungen auch viel weniger Energie benötigt, was die weltweiten, aber auch die unternehmensspezifischen Ressourcen/Kosten schont, Siehe dazu auch Künstliche Intelligenz: Das menschliche Gehirn benötigt maximal 30 Watt für komplexe Problemlösungen.

Darüber hinaus gibt es auch immer mehr leistungsfähige Open Source KI-Modelle, die jedem zur Verfügung stehen, und beispielsweise eher europäischen Werten entsprechen. Siehe dazu auch Das Kontinuum zwischen Closed Source AI und Open Source AI

Wenn also in Zukunft mehr als 1 Milliarde Menschen Künstliche Intelligenz nutzen, stellt sich gleich die Frage, wie Unternehmen damit umgehen. Immerhin war es üblich, dass so eine Art der intelligenten komplexen Problemlösung bisher nur spärlich – und dazu auch noch teuer – zur Verfügung stand.

Nun werden Milliarden von einzelnen Personen die Möglichkeit haben, mit geringen Mitteln komplexe Problemlösungen selbst durchzuführen. Prof. Ethan Mollick nennt dieses Phänomen in einem Blogbeitrag Mass Intelligence.

„The AI companies (whether you believe their commitments to safety or not) seem to be as unable to absorb all of this as the rest of us are. When a billion people have access to advanced AI, we’ve entered what we might call the era of Mass Intelligence. Every institution we have — schools, hospitals, courts, companies, governments — was built for a world where intelligence was scarce and expensive. Now every profession, every institution, every community has to figure out how to thrive with Mass Intelligence“ (Mollick, E. (2025): Mass Intelligence, 25.08.2025).

Ich bin sehr gespannt, ob sich die meisten Menschen an den proprietären großen KI-Modellen der Tech-Konzerne orientieren werden, oder ob es auch einen größeren Trend gibt, sich mit KI-Modellen weniger abhängig zu machen – ganz im Sinne einer Digitalen Souveränität.

Künstliche Intelligenz und Lernzieltaxonomie

Die Lernzieltaxonomie von Bloom et al. aus dem Jahr 1956 wird heute noch in ihrer ursprünglichen Fassung benutzt, obwohl es schon zeitgemäßere Weiterentwicklungen gibt.

Zunächst einmal ist der Vorschlag von Anderson und Krathwohl aus dem Jahr 2001 zu nennen, bei dem die oberste Ebene in Evaluieren umbenannt wurde, und eine weitere Ebene „Erschaffen“ hinzugekommen ist.

Auf Basis dieser Weiterentwicklung hat die Oregon State University 2024 eine englischsprachige Darstellung unter der Lizenz CC BY-NC 4.0 veröffentlicht, die die jeweiligen Ebenen mit den Möglichkeiten der Künstlicher Intelligenz ergänzt.

Das Trendscouting-Team der PHBern hat die gesamte Übersicht ins Deutsche übersetzt (Abbildung).