Was sind eigentlich mögliche Aufgabengebiete der Künstlichen Intelligenz?

Group of people with devices in hands working together as symbol of networking and communication

Die Geburtsstunde von “Künstlicher Intelligenz” geht auf einen Konferenzbeitrag von McCarthy im Jahr 1955 zurück. In der Zwischenzeit gibt es durch die vielen neuen technischen Möglichkeiten zwar immer wieder Definitionsversuche, doch immer noch keine einheitliche und anerkannte Definition. Was allerdings klar erscheint sind die verschiedenen Aufgabengebiete, die für eine Künstliche Intelligenz geeignet erscheinen. Russell und Norvig unterscheiden hier acht Aufgabengebiete (vgl. Russell und Norvig 2012; Peissner et al. 2019), zitiert in Fraunhofer IAO 2020:11-12):

  • Lernen
  • Problemlösung durch Suchen
  • Planen
  • Robotik
  • Entscheidung
  • Wissensrepräsentation
  • Wahrnehmung
  • Spracherkennung

Anhand dieser Auflistung wird deutlich, dass Künstliche Intelligenz viele Tätigkeiten in unserem gesellschaftlichen und wirtschaftlichen Leben beeinflussen kann. Es geht hier allerdings nicht immer um komplette Jobs, die infrage gestellt werden, sondern auch um Tätigkeitsportfolios, die in einzelnen Jobs oder in Prozessketten von KI profitieren können. Hier ein Beispiel:

Populär wurden in jüngster Zeit Anwendungen wie beispielsweise KI-gestützte »Chatbots«. Dies sind Programme, die eine Konversation mit Nutzern führen können. Social Chatbots agieren in sozialen Netzwerken wie Facebook und Twitter (vgl. Edwards 2016). Anwendungsgebiete sind u.a. Bestellungen (z.B. Pizza-Service), Antworten auf Kundenanfragen zu Prozessen (Paketdienste) und Bearbeitung von Beschwerden (Fraunhofer IAO 2020:13).

Intelligente Organisation oder Organisationale Intelligenz? Was soll das sein?

Image by Gerd Altmann from Pixabay

Wenn wir über Intelligenz oder Dummheit sprechen, geht es oft einerseits um intelligente Menschen und anderseits um intelligente maschinelle Systeme wie maschinelles Lernen oder Künstliche Intelligenz. In Unternehmen/Organisationen oder weiter gefasst, in Systemen geht es allerdings auch darum, die verschiedenen Facetten der Intelligenz zu fördern und für Werte zu nutzen. Bei Organisationen kommen die beiden Perspektiven “Intelligent Organization” und “Organizational Intelligence” ins Spiel.

Within this field two major research communities can be found. The first on has been established around the annual Hawai International Conference on System Sciences (HICSS), starting from a tutorial on “Intelligent Organizations” presented by G. P. Huber in 1987. The second has its roots in Japan, where T. Matsuda is developing towards a holistic approach of what he calls “Organizational Intelligence” (…). In contrast of others he [Matsuda 1988, 1991, 1992] stresses that machine learning is an integral part of the intelligence of an organization (vgl. Kirn 1996:141).

Die Organisationale Intelligence nach Matsuda integriert menschliche Intelligenz und (heute) Künstliche Intelligenz. Ich würde dabei noch ergänzen, dass dies nicht nur auf der organisationalen Ebene, sondern auch auf der individuellen Ebene, bei Teams und in Netzwerken außerhalb der Organisation eine Rolle spielt. In Meinem Buch Freund, R. (2011): das Konzept der Multiplen Kompetenz auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk habe ich diesen Ansatz auch mit Hilfe der Theorie der Multiplen Intelligenzen beschrieben.

Was sind eigentlich Multi-Kontext-Probleme?

Image by Gerd Altmann from Pixabay

Der Begriff “Problem” kommt in unserer Gesellschaft häufig vor, dabei gibt es oft keine einheitliche Meinung darüber, was ein “Problem” eigentlich ist. Es gibt einfache Probleme mit dem dazugehörenden simple problem solving, und komplexe Probleme mit ihrem complex problem solving. In solchen Multi-Kontext-Problemen kommt es darauf an, Entscheidungen unter Unsicherheit zu treffen – was nicht so einfach ist…

Strategische Probleme werden als wenig strukturierte bzw. schwer strukturierbare Probleme betrachtet. Für solche „innovativen Probleme“ bestehen wenig eindeutige Lösungsverfahren (Bamberger & Wrona, 2000). Analog hierzu spricht Dörner (1979) von dialektischen Problemen, bei denen zwar die Ausgangslage bekannt ist, aber nicht der Zielzustand und auch nicht die möglichen Mittel diesen Zielzustand zu erreichen. „Sie stellen Entscheidungen unter Unsicherheit dar und werden auch als sog. Multi-Kontext-Probleme derart bezeichnet, dass sie in unterschiedlichen, jeweils aktorspezifischen Kontexten definiert bzw. expliziert werden“ (Bamberger & Wrona, 2000, S. 6). Probleme werden demnach jeweils im Sinne eigener Werte Normen, Interessen und Sichtweisen der Realität betrachtet und interpretiert. Mit diesen unterschiedlichen Realitätskonstruktionen ist stets die Möglichkeit von Konflikten und das Erfordernis sie zu lösen verbunden (Bamberger & Wrona, 2000) (vgl. Grote, S.; Kauffeld, S.; Hering, V. & Tappe, D. 2009:15, Hervorhebung durch den Autor des Blogbetrags).

Complex Problem Solving ist anders als das einfache, Simple Problem Solving. Die Bewältigung solcher Multi-Kontext-Probleme ist allerdings für die Zukunft entscheidend. Manche Systeme der Künstlichen Intelligenz (KI/AI) können in der Zwischenzeit durchaus schon komplexe Problemsettings lösen, was zu Veränderungen auf dem Arbeitsmarkt führt, und in Zukunft noch stärker führen wird. Entscheidend für Menschen ist immer noch, die Bewältigung komplexer Problemlösungssituationen, die uns (noch) von Algorithmen der Künstlichen Intelligenz unterscheidet.

In meinem Vortrag (Special Keynote) auf der MCPC 2015 (Weltkonferenz zu Mass Customitation, Personalization and Co-Creation) in Montreal habe ich diese Zusammenhänge für Open Innovation dargestell (Konferenzen). Es freut mich sehr, dass mein damaligen Paper bei Researchgate heute immer noch intensiv gelesen und genutzt wird. Mein Paper Cognitive Computing and Managing Complexity in Open Innovation Model zur Weltkonferenz MCPC 2015 ist bei Springer veröffentlicht worden. Bitte sprechen Sie mich an, wenn Sie dazu Fragen haben.

Ist Wissensmanagement 4.0 ein hybrides Wissensmanagement?

Group of people with devices in hands working together as symbol of networking and communication

In dem Artikel North, K; Maier, R. (2018): Wissen 4.0 – Wissensmanagement im digitalen Wandel gehen die Autoren von der Annahme aus, dass die Wissensproduktion genau so wie Arbeit (Arbeit 1.0 bis Arbeit 4.0) in Wissen 1.0 bis 4.0 aufgeteilt werden kann. Dabei erweitern sie das Konstrukt der Wissenstreppe in eine Wissenstreppe 4.0.

Weiterhin gehen die Autoren davon aus, dass ein Wissensmanagement 4.0 operativ und strategisch unterstützend – und somit ambidexter – sein sollte.

Dem Konzept der „Beidhändigkeit“ (Ambidexterity, Tushman und O’Reilly 1996) folgend muss das Wissensmanagement sowohl aus operativer Perspektive die optimale Nutzung von Wissen für das aktuelle Geschäft sicherstellen („Exploitation“) als auch aus strategischer Perspektive das Wissen und die Lernfähigkeit für das zukünftige Geschäft entwickeln („Exploration“) (North/Maier 2018).

Dieses ambidextere Element von Wissensmanagement 4.0 erinnert stark an andere hybride Vorgehensweisen, die immer stärker in den Fokus rücken. Es handelt sich dabei beispielsweise um die hybride Wettbewerbsstrategie Mass Customization oder aber um das hybride Projektmanagement.

Abschließend würde ich noch folgende Punkte ergänzen:

  • Künstliche Intelligenz und Wissensmanagement.
  • Erweiterung der drei genannten Ebenen Individuum, Gruppe Organisation um die Ebene Netzwerk.
  • Bewertung des Wissenssystems mit Hilfe der Wissensbilanz – Made in Germany.
  • Abgrenzung zu einem Kompetenzmanagement auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk – siehe dazu Freund (2011).

Künstliche Intelligenz einfach erklärt

In der Veröffentlichung BMBF (2020): Künstliche Intelligenz (PDF) wird auf relativ einfache weise erläutert, um was es bei dem Begriff “KI” geht. Interessant ist, dass der Begriff schon 1956 von John McCarthy kreiert wurde, und in der Zwischenzeit folgende Bedeutung hat:

Künstliche Intelligenz (KI) ist ein Teilgebiet der Informatik. Sie erforscht Mechanismen, die intelligentes menschliches Verhalten simulieren können. Das beinhaltet zum Beispiel, eigenständig Schlussfolgerungen zu ziehen, angemessen auf Situationen zu reagieren
oder aus Erfahrungen zu lernen (S. 4).

Der Bezug zu einem intelligenten menschlichen Verhalten wirft bei mir die Frage auf, was darunter, und unter menschlicher Intelligenz zu verstehen ist. Ist es der ´berühmt-berüchtigte´Intelligenz-Quotient (IQ), der als Gegenpol zur Künstlichen Intelligenz (KI) gesehen wird, oder sind es auch die verschiedenen Facetten einer Emotionalen Intelligenz (EQ), oder sogar Multiple Intelligenzen (nach Howard Gardner). Der Intelligenz-Begriff war schon in der Vergangenheit wichtig, und scheint in komplexen Settings immer wichtiger zu werden. 

Maschinelles Lernen: Aktueller Stand (Fraunhofer-Studie)

Die Veröffentlichung Fraunhofer (2018): Maschinelles Lernen: Kompetenzen, Forschung, Anwendung (PDF) zeigt den aktuellen Stand der Diskussion, die manchmal von Laien tendenziell beeinflusst wird, um Stimmung (Für und Wider) zu machen. Hilfreich ist auch das umfangreiche Glossar, das die wichtigsten Begriffe (Konstrukte) beschreibt. Beispielhaft ist hier die Definition für Maschinelles Lernen genannt, die auch für das Wissensmanagement eine immer wichtigere Rolle spielt:

Maschinelles Lernen bezweckt die Generierung von Wissen aus Erfahrung, indem Lernalgorithmen aus Beispielen ein komplexes Modell entwickeln. Das Modell kann anschließend auf neue, potenziell unbekannte Daten der selben Art angewendet werden. Damit kommt das Maschinelle Lernen ohne manuelle Wissenseingabe oder explizite Programmierung eines Lösungswegs aus (S. 44).

Künstliche Intelligenz treibt Innovationen

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Studie: Künstliche Intelligenz und die Zukunft der Arbeit

künstliche-Intelligenz

Die Studie IIT (2017): Wie sieht die Zukunft der Arbeit aus? (PDF, November 2017) befasst sich mit den Auswirkungen der Künstlichen Intelligenz. Die Veröffentlichung zeigt, welche Chancen und Risiken zu erwarten sind. Es kommt – wie immer – darauf an, was wir daraus machen (S.23):

Künstliche Intelligenz kann vielfältige Rollen und Funktionen im Arbeitsprozess übernehmen. Darunter sind eher positiv besetzte Rollen der Unterstützung, Beratung und Information, und eher negativ besetzte Rollen wie zum Beispiel die der Kontrolle, Überwachung und Bevormundung. Die Frage, die wir uns daher stellen müssen lautet: Wie müssen KI-Systeme und ihre Einsatzszenarien aussehen, damit die künftige Arbeitswelt menschengerecht und gesellschaftlich akzeptabel gestaltet werden kann?

Siehe dazu auch Welche Veränderung erfährt Wissensarbeit durch neue Technologien? In den von uns entwickelten Blended Learning Lehrgängen gehen wir auch auf diese Themen ein. Weitere Informationen finden Sie auf unserer Lernplattform.

Morgen: WDR 5 Thementag über Künstliche Intelligenz

wdr5-thementag-ki

Morgen, am 05.07.2016 gibt es bei WDR 5 einen Thementag über Künstiche Intelligenz. Es ist schon erstaunlich, wie sich dieses Themenfeld in den letzten Jahren verbreitet hat, sodass jetzt sogar Anstalten des öffentlichen Rechts darüber ausführlich berichten. Beim WDR wird allerdings häufig über neue technologische Entwicklungen negativ berichtet. Ich habe dazu schon oft von unterwegs angerufen und Hinweise dazu gegeben (Sharing Economy, Open Innovation, Crowdsourcing …) – natürlich ohne große Wirkung. Möglicherweise ist beim WDR auch etwas Selbsterhaltungstrieb dabei… Hony soit qui mal y pense. Siehe dazu auch Freund, R. (2016): Wie verändert Cognitive Computing die HR-Landschaft?. In: HR Performance 2/2016, S. 16-19 | Download.