In der Zwischenzeit kann Künstliche Intelligenz im Projektmanagement genutzt werden – beispielsweise im Projektmarketing

Image by talha khalil from Pixabay

Der Hype um die Künstliche Intelligenz , und in der letzten Zeit speziell um ChatGPT 3 (seit einigen Tagen auch CHatGPT 4) zeigt deutlich auf, dass es jetzt darauf ankommt, die neuen Möglichkeiten zu nutzen. In einem Interview hat Prof. Doris Wessels einige konkrete Möglichkeiten zur Nutzung von ChatGPT für das Projektmarketing aufgezeigt.

“Wir können KI heute nutzen, um Texte, Bilder und Grafiken für das Projektmarketing zu generieren. Auch KI-generierte Videos sind möglich, die komplexe Sachverhalte erklären. Was für uns wichtig ist: KI kann dies alles in überzeugender, professioneller Qualität produzieren. Und es ist heute ziemlich einfach” (Steeger, O. (2023): Künstliche Intelligenz revolutioniert Projektmarketing, in: projektmanagementaktuell 1.2023).

Dabei wird Content zielgruppenspezifisch mit Hilfe von ChatGPT für alle Interessengruppen/Stakeholder konfiguriert. Entscheidend ist hier der Input.

“Entscheidend für den Output ist, wie der Input – also der Prompt – formuliert ist” (ebd.).

Das ist zwar gewöhnungsbedürftig, dennoch mit etwas Übung gut machbar. Weiterhin bieten immer mehr Anbieter auch zusätzliche Tools an, die über eine API-Schnittstelle die Möglichkeiten der KI erweitern.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

GPT-4 Developer Livestream

Es ist schon unglaublich, welche Möglichkeiten sich durch OpenAI und speziell GPT-4 ergeben. Es kommt nun darauf an, diese Möglichkeiten sinnvoll einzusetzen. Wie alle technologischen Entwicklungen hat auch Künstliche Intelligenz (KI, oder AI) zwei Seiten: Vorteile und Nachteile. Diese Ambivalenz sollte immer bedacht werden, doch sollten nicht immer nur die Nachteile im Vordergrund stehen. Es liegt an uns, was wir daraus machen.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

OpenAI und DALL·E 2 selbst ausprobiert

Seit einiger Zeit habe ich mich bei OpenAI angemeldet und erste Texte generieren lassen. Darüber hinaus ist es möglich, sich mit den gleichen Zugangsdaten bei DALL·E 2 anzumelden, um über Texteingaben Bilder generieren zu lassen. Beides auszuprobieren macht Spaß und zeigt, welche Möglichkeiten diese technischen Entwicklungen in Zukunft bieten werden. In meiner Special Keynote auf der MCPC2015 in Montreal, hatte ich auf die vielfältigen Möglichkeiten von Cognitive Computing bei Innovationen hingewiesen. Das Paper wurde in den Konferenz-Proceedings dann 2016 bei Springer veröffentlicht.

Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Freund, R. (2016): Wie verändert Cognitive Computing die HR-Landschaft?. In: HR Performance 2/2016, S. 16-19 | Download

Hybrid Intelligence: Menschliche und künstliche Intelligenz

Der Begriff “Intelligenz” wird sehr oft und in verschiedenen Zusammenhängen verwendet. Es geht einerseits um die menschliche Intelligenz (Human Intelligence) und andererseits auch um Künstliche Intelligenz (KI) oder Artificial Intelligence (AI). Dabei werden immer wieder (dumme Fragen) zum Entweder-Oder gestellt – also in dem Sinne: Was ist besser, menschliche Intelligenz oder Künstliche Intelligenz?

Wir leben in einer Zeit der reflexiven Modernisierung, bei der es zu Entgrenzung und Kontingenz in allen Bereichen kommt – auch bei dem Konstrukt “Intelligenz”. Es ist daher nicht erstaunlich, dass sich das Center for Hybrid Intelligence gerade damit befasst, wie menschliche und künstliche Intelligenz in einer hybriden Form betrachtet werden können.

Hybrid Intelligence (HI) is defined as the ability to achieve complex goals by combining human and artificial intelligence, thereby reaching superior results to those each of them could have accomplished separately, and continuously improve by learning from each other (Dellermann et al. 2019)”.

Auf der Website wird darauf hingewiesen, dass divergentes und konvergentes Denken für kreative Prozesse wichtig sind. Neben dem Begriff der “Intelligenz” kommt somit noch der Begriff “Kreativität” hinzu. Geht man davon aus, dass diese Begriffe ineinander spielen, vom jeweiligen Kontext abhängig sind, und auf verschiedenen Ebenen wie Individuum, Gruppe, Organisation und Netzwerk wirksam werden können wird deutlich, wie umfangreich der Forschungsgegenstand ist.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer und Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk. Dissertation, Verlag Dr. Kovac.

Zukunftsbilder für Arbeit in Büros und Produktion

In den verschiedenen wissenschaftlichen Diskussionen geht es einerseits um die Digitalisierungsstrategie und andererseits um die Aufgabenkomplexität. Die folgende Übersicht zeigt beispielhaft, welche Zukunftsbilder sich daraus für Büros und Produktion ergeben.

PolarisierungUpgrading
AssistenzAngelerntenarbeitFach- und Wissensarbeit
SubstitutionVollautomatisierungProzessbetreuung
Quelle: Korge et al. 2016, zitiert in Korge, A.; Marrenbach, D. (2018:9)

“Ausgangspunkt für die Konzeption der Zukunftsbilder sind zwei aktuelle, wissenschaftliche Diskussionen. Die erste Diskussion betrachtet die Digitalisierungsstrategie. Sie unterscheidet, ob die Digitalisierung eine Ersetzung (Substitution) menschlicher Arbeit oder eine Unterstützung des arbeitenden Menschen (Assistenz) anstrebt. Die zweite Diskussion behandelt die Entwicklung von Aufgabenkomplexität und Qualifikationen bei den Beschäftigten. Unterschieden wird zwischen Aufwertung (Upgrading) und Aufspaltung (Polarisierung)” (Korge/Marrenbach 2018:9).

Interessant dabei ist, dass die einzelnen Zukunftsbilder gut voneinander abgrenzbar sind, und zu verschiedenen Anforderungen an die Mitarbeiter und an die Organisation führen. Weiterhin ist davon auszugehen, dass Unternehmen oftmals ein Mix der verschiedenen Arbeitsfelder zu bewältigen haben, was zu einer ambidexteren Organisation führt. Siehe dazu auch Projektmanagement: Agil, hybrid, klassisch?

Was sind eigentlich mögliche Aufgabengebiete der Künstlichen Intelligenz?

Group of people with devices in hands working together as symbol of networking and communication

Die Geburtsstunde von “Künstlicher Intelligenz” geht auf einen Konferenzbeitrag von McCarthy im Jahr 1955 zurück. In der Zwischenzeit gibt es durch die vielen neuen technischen Möglichkeiten zwar immer wieder Definitionsversuche, doch immer noch keine einheitliche und anerkannte Definition. Was allerdings klar erscheint sind die verschiedenen Aufgabengebiete, die für eine Künstliche Intelligenz geeignet erscheinen. Russell und Norvig unterscheiden hier acht Aufgabengebiete (vgl. Russell und Norvig 2012; Peissner et al. 2019), zitiert in Fraunhofer IAO 2020:11-12):

  • Lernen
  • Problemlösung durch Suchen
  • Planen
  • Robotik
  • Entscheidung
  • Wissensrepräsentation
  • Wahrnehmung
  • Spracherkennung

Anhand dieser Auflistung wird deutlich, dass Künstliche Intelligenz viele Tätigkeiten in unserem gesellschaftlichen und wirtschaftlichen Leben beeinflussen kann. Es geht hier allerdings nicht immer um komplette Jobs, die infrage gestellt werden, sondern auch um Tätigkeitsportfolios, die in einzelnen Jobs oder in Prozessketten von KI profitieren können. Hier ein Beispiel:

Populär wurden in jüngster Zeit Anwendungen wie beispielsweise KI-gestützte »Chatbots«. Dies sind Programme, die eine Konversation mit Nutzern führen können. Social Chatbots agieren in sozialen Netzwerken wie Facebook und Twitter (vgl. Edwards 2016). Anwendungsgebiete sind u.a. Bestellungen (z.B. Pizza-Service), Antworten auf Kundenanfragen zu Prozessen (Paketdienste) und Bearbeitung von Beschwerden (Fraunhofer IAO 2020:13).

Intelligente Organisation oder Organisationale Intelligenz? Was soll das sein?

Image by Gerd Altmann from Pixabay

Wenn wir über Intelligenz oder Dummheit sprechen, geht es oft einerseits um intelligente Menschen und anderseits um intelligente maschinelle Systeme wie maschinelles Lernen oder Künstliche Intelligenz. In Unternehmen/Organisationen oder weiter gefasst, in Systemen geht es allerdings auch darum, die verschiedenen Facetten der Intelligenz zu fördern und für Werte zu nutzen. Bei Organisationen kommen die beiden Perspektiven “Intelligent Organization” und “Organizational Intelligence” ins Spiel.

Within this field two major research communities can be found. The first on has been established around the annual Hawai International Conference on System Sciences (HICSS), starting from a tutorial on “Intelligent Organizations” presented by G. P. Huber in 1987. The second has its roots in Japan, where T. Matsuda is developing towards a holistic approach of what he calls “Organizational Intelligence” (…). In contrast of others he [Matsuda 1988, 1991, 1992] stresses that machine learning is an integral part of the intelligence of an organization (vgl. Kirn 1996:141).

Die Organisationale Intelligence nach Matsuda integriert menschliche Intelligenz und (heute) Künstliche Intelligenz. Ich würde dabei noch ergänzen, dass dies nicht nur auf der organisationalen Ebene, sondern auch auf der individuellen Ebene, bei Teams und in Netzwerken außerhalb der Organisation eine Rolle spielt. In Meinem Buch Freund, R. (2011): das Konzept der Multiplen Kompetenz auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk habe ich diesen Ansatz auch mit Hilfe der Theorie der Multiplen Intelligenzen beschrieben.

Was sind eigentlich Multi-Kontext-Probleme?

Image by Gerd Altmann from Pixabay

Der Begriff “Problem” kommt in unserer Gesellschaft häufig vor, dabei gibt es oft keine einheitliche Meinung darüber, was ein “Problem” eigentlich ist. Es gibt einfache Probleme mit dem dazugehörenden simple problem solving, und komplexe Probleme mit ihrem complex problem solving. In solchen Multi-Kontext-Problemen kommt es darauf an, Entscheidungen unter Unsicherheit zu treffen – was nicht so einfach ist…

Strategische Probleme werden als wenig strukturierte bzw. schwer strukturierbare Probleme betrachtet. Für solche „innovativen Probleme“ bestehen wenig eindeutige Lösungsverfahren (Bamberger & Wrona, 2000). Analog hierzu spricht Dörner (1979) von dialektischen Problemen, bei denen zwar die Ausgangslage bekannt ist, aber nicht der Zielzustand und auch nicht die möglichen Mittel diesen Zielzustand zu erreichen. „Sie stellen Entscheidungen unter Unsicherheit dar und werden auch als sog. Multi-Kontext-Probleme derart bezeichnet, dass sie in unterschiedlichen, jeweils aktorspezifischen Kontexten definiert bzw. expliziert werden“ (Bamberger & Wrona, 2000, S. 6). Probleme werden demnach jeweils im Sinne eigener Werte Normen, Interessen und Sichtweisen der Realität betrachtet und interpretiert. Mit diesen unterschiedlichen Realitätskonstruktionen ist stets die Möglichkeit von Konflikten und das Erfordernis sie zu lösen verbunden (Bamberger & Wrona, 2000) (vgl. Grote, S.; Kauffeld, S.; Hering, V. & Tappe, D. 2009:15, Hervorhebung durch den Autor des Blogbetrags).

Complex Problem Solving ist anders als das einfache, Simple Problem Solving. Die Bewältigung solcher Multi-Kontext-Probleme ist allerdings für die Zukunft entscheidend. Manche Systeme der Künstlichen Intelligenz (KI/AI) können in der Zwischenzeit durchaus schon komplexe Problemsettings lösen, was zu Veränderungen auf dem Arbeitsmarkt führt, und in Zukunft noch stärker führen wird. Entscheidend für Menschen ist immer noch, die Bewältigung komplexer Problemlösungssituationen, die uns (noch) von Algorithmen der Künstlichen Intelligenz unterscheidet.

In meinem Vortrag (Special Keynote) auf der MCPC 2015 (Weltkonferenz zu Mass Customitation, Personalization and Co-Creation) in Montreal habe ich diese Zusammenhänge für Open Innovation dargestell (Konferenzen). Es freut mich sehr, dass mein damaligen Paper bei Researchgate heute immer noch intensiv gelesen und genutzt wird. Mein Paper Cognitive Computing and Managing Complexity in Open Innovation Model zur Weltkonferenz MCPC 2015 ist bei Springer veröffentlicht worden. Bitte sprechen Sie mich an, wenn Sie dazu Fragen haben.

Ist Wissensmanagement 4.0 ein hybrides Wissensmanagement?

Group of people with devices in hands working together as symbol of networking and communication

In dem Artikel North, K; Maier, R. (2018): Wissen 4.0 – Wissensmanagement im digitalen Wandel gehen die Autoren von der Annahme aus, dass die Wissensproduktion genau so wie Arbeit (Arbeit 1.0 bis Arbeit 4.0) in Wissen 1.0 bis 4.0 aufgeteilt werden kann. Dabei erweitern sie das Konstrukt der Wissenstreppe in eine Wissenstreppe 4.0.

Weiterhin gehen die Autoren davon aus, dass ein Wissensmanagement 4.0 operativ und strategisch unterstützend – und somit ambidexter – sein sollte.

Dem Konzept der „Beidhändigkeit“ (Ambidexterity, Tushman und O’Reilly 1996) folgend muss das Wissensmanagement sowohl aus operativer Perspektive die optimale Nutzung von Wissen für das aktuelle Geschäft sicherstellen („Exploitation“) als auch aus strategischer Perspektive das Wissen und die Lernfähigkeit für das zukünftige Geschäft entwickeln („Exploration“) (North/Maier 2018).

Dieses ambidextere Element von Wissensmanagement 4.0 erinnert stark an andere hybride Vorgehensweisen, die immer stärker in den Fokus rücken. Es handelt sich dabei beispielsweise um die hybride Wettbewerbsstrategie Mass Customization oder aber um das hybride Projektmanagement.

Abschließend würde ich noch folgende Punkte ergänzen:

  • Künstliche Intelligenz und Wissensmanagement.
  • Erweiterung der drei genannten Ebenen Individuum, Gruppe Organisation um die Ebene Netzwerk.
  • Bewertung des Wissenssystems mit Hilfe der Wissensbilanz – Made in Germany.
  • Abgrenzung zu einem Kompetenzmanagement auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk – siehe dazu Freund (2011).

Künstliche Intelligenz einfach erklärt

In der Veröffentlichung BMBF (2020): Künstliche Intelligenz (PDF) wird auf relativ einfache weise erläutert, um was es bei dem Begriff “KI” geht. Interessant ist, dass der Begriff schon 1956 von John McCarthy kreiert wurde, und in der Zwischenzeit folgende Bedeutung hat:

Künstliche Intelligenz (KI) ist ein Teilgebiet der Informatik. Sie erforscht Mechanismen, die intelligentes menschliches Verhalten simulieren können. Das beinhaltet zum Beispiel, eigenständig Schlussfolgerungen zu ziehen, angemessen auf Situationen zu reagieren
oder aus Erfahrungen zu lernen (S. 4).

Der Bezug zu einem intelligenten menschlichen Verhalten wirft bei mir die Frage auf, was darunter, und unter menschlicher Intelligenz zu verstehen ist. Ist es der ´berühmt-berüchtigte´Intelligenz-Quotient (IQ), der als Gegenpol zur Künstlichen Intelligenz (KI) gesehen wird, oder sind es auch die verschiedenen Facetten einer Emotionalen Intelligenz (EQ), oder sogar Multiple Intelligenzen (nach Howard Gardner). Der Intelligenz-Begriff war schon in der Vergangenheit wichtig, und scheint in komplexen Settings immer wichtiger zu werden.