Artificial Intelligence Index Report 2023

Alle sprechen und schreiben über Künstliche Intelligenz (KI) – oder englischsprachig Artificial Intelligence (AI) -wobei vieles auch bewusst tendenziell dargestellt wird. Die Befürworter schreiben alles schön, und die Gegner alles schlecht, doch dazwischen gibt es noch ein Kontinuum von Möglichkeiten. So eine differenzierte Betrachtung findet man oftmals nur in wissenschaftlichen Veröffentlichungen. Beispielsweise haben verschiedene Autoren den Artificial Intelligence Index Report 2023 veröffentlicht, der viele verschiedene Perspektiven auf das Thema beleuchtet.

Quelle: Nestor Maslej, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Helen Ngo, Juan Carlos Niebles, Vanessa Parli, Yoav Shoham, Russell Wald, Jack Clark, and Raymond Perrault, “The AI Index 2023 Annual Report,” AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA, April 2023 | PDF.

Der Report enthält 10 Takeaways:
1Industry races ahead of academia.
2Performance saturation on traditional benchmarks.
3AI is both helping and harming the environment.
4The world’s best new scientist … AI?
5The number of incidents concerning the misuse of AI is rapidly rising.
6The demand for AI-related professional skills is increasing across virtually every American industrial sector.
7For the first time in the last decade, year-over-year private investment in AI decreased.
8While the proportion of companies adopting AI has plateaued, the companies that have adopted AI continue to pull ahead.
9Policymaker interest in AI is on the rise.
10Chinese citizens are among those who feel the most positively about AI products and services. Americans … not so much.
ebd. Seiten 3-4.

Wir befassen uns aktuell auch mit dem Möglichkeiten, KI im Projektmanagement einzusetzen. Dabei testen wir gerade speziell die Nutzung von ChatGPT im klassischen, plangetriebenen Projektmanagement. Siehe dazu auch Motivationsfaktoren und Fragen für den Einstieg in das Thema Künstliche Intelligenz (KI).

In den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK) gehen wir auf diese Zusammenhänge ein. Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Motivationsfaktoren und Fragen für den Einstieg in das Thema Künstliche Intelligenz (KI)

Alle reden von KI (Künstlicher Intelligenz). Besonders populär sind aktuell die vielfältigen Möglichkeiten von ChatGPT 3.5, bzw. ChatGPT 4. Dabei stellt sich natürlich die Frage, wie man diese Möglichkeiten selbst für ein KI-Projekt nutzen kann. Zu Beginn sollten Sie ihre Motivationsfaktoren analysieren, und die damit verbundenen Fragen beantworten.

MotivationFrage
Ich habe eine Maschine.Kann ich damit und mit deren Daten etwas machen?
Ich habe einen Prozess.Kann ich diesen mithilfe von KI verbessern?
Ich habe Daten.Kann ich darin interessante Muster und Informationen finden?
Ich habe eine Idee für ein zusätzliches Produkt / eine Produktergänzung.Kann ich diese mithilfe von KI umsetzen? Welche KI?
Ich habe von KI bzw. einem Anwendungsfall von KI gehört.Kann ich das irgendwie in meinem Unternehmen anwenden,
um etwas zu verbessern?
Kann ich denselben Ansatz verwenden?
Ich möchte / muss digitaler werdenWas kann ich tun? Wie kann ich das machen?
Armbruster, J. (2023:29): Erfolgreich in ein KI-Projekt starten, in: projektmanagementaktuell 1/2023, S. 26-32.

Die Autorin weist darauf hin, dass die Herausforderung darin liegt, diese unzähligen Möglichkeiten zum Einsatz von KI auf umsetzbare und wertstiftende Anwendungsfälle in den Unternehmen herunterzubrechen sind (ebd. S. 28). Dazu ist es erforderlich, entsprechende Kompetenzen zu entwickeln.

In den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK) gehen wir auf diese Zusammenhänge ein. Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Digitalisierung – inkl. KI – im Projektmanagement

Die aktuelle Ausgabe 1/2023 der Zeitschrift projektmanagementaktuell befasst sich mit der Digitalisierung im Projektmanagement. Schaut man sich diese Ausgabe etwas genauer an ist zu erkennen, dass es den Beitrag Wie entwickelt sich das Projektmanagement und warum?, oder auch einen Schwerpunkt zur Nutzung von KI (Künstlicher Intelligenz) im Projektmanagement gibt. Ich hätte mir daher einen etwas aussagefähigeren Titel gewünscht.

Wir experimentieren gerade mit ChatGPT im Projektmanagement. Die ersten Ergebnisse sind vielversprechend – es kommt sehr auf den Input an, auf die Prompts, damit es zu guten Ergebnissen kommt. Dazu braucht man auch etwas Übung. Siehe dazu auch In der Zwischenzeit kann Künstliche Intelligenz im Projektmanagement genutzt werden – beispielsweise im Projektmarketing.

In den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK) gehen wir auf diese Zusammenhänge ein. Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

In der Zwischenzeit kann Künstliche Intelligenz im Projektmanagement genutzt werden – beispielsweise im Projektmarketing

Image by talha khalil from Pixabay

Der Hype um die Künstliche Intelligenz , und in der letzten Zeit speziell um ChatGPT 3 (seit einigen Tagen auch CHatGPT 4) zeigt deutlich auf, dass es jetzt darauf ankommt, die neuen Möglichkeiten zu nutzen. In einem Interview hat Prof. Doris Wessels einige konkrete Möglichkeiten zur Nutzung von ChatGPT für das Projektmarketing aufgezeigt.

“Wir können KI heute nutzen, um Texte, Bilder und Grafiken für das Projektmarketing zu generieren. Auch KI-generierte Videos sind möglich, die komplexe Sachverhalte erklären. Was für uns wichtig ist: KI kann dies alles in überzeugender, professioneller Qualität produzieren. Und es ist heute ziemlich einfach” (Steeger, O. (2023): Künstliche Intelligenz revolutioniert Projektmarketing, in: projektmanagementaktuell 1.2023).

Dabei wird Content zielgruppenspezifisch mit Hilfe von ChatGPT für alle Interessengruppen/Stakeholder konfiguriert. Entscheidend ist hier der Input.

“Entscheidend für den Output ist, wie der Input – also der Prompt – formuliert ist” (ebd.).

Das ist zwar gewöhnungsbedürftig, dennoch mit etwas Übung gut machbar. Weiterhin bieten immer mehr Anbieter auch zusätzliche Tools an, die über eine API-Schnittstelle die Möglichkeiten der KI erweitern.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

GPT-4 Developer Livestream

Es ist schon unglaublich, welche Möglichkeiten sich durch OpenAI und speziell GPT-4 ergeben. Es kommt nun darauf an, diese Möglichkeiten sinnvoll einzusetzen. Wie alle technologischen Entwicklungen hat auch Künstliche Intelligenz (KI, oder AI) zwei Seiten: Vorteile und Nachteile. Diese Ambivalenz sollte immer bedacht werden, doch sollten nicht immer nur die Nachteile im Vordergrund stehen. Es liegt an uns, was wir daraus machen.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

OpenAI und DALL·E 2 selbst ausprobiert

Seit einiger Zeit habe ich mich bei OpenAI angemeldet und erste Texte generieren lassen. Darüber hinaus ist es möglich, sich mit den gleichen Zugangsdaten bei DALL·E 2 anzumelden, um über Texteingaben Bilder generieren zu lassen. Beides auszuprobieren macht Spaß und zeigt, welche Möglichkeiten diese technischen Entwicklungen in Zukunft bieten werden. In meiner Special Keynote auf der MCPC2015 in Montreal, hatte ich auf die vielfältigen Möglichkeiten von Cognitive Computing bei Innovationen hingewiesen. Das Paper wurde in den Konferenz-Proceedings dann 2016 bei Springer veröffentlicht.

Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Freund, R. (2016): Wie verändert Cognitive Computing die HR-Landschaft?. In: HR Performance 2/2016, S. 16-19 | Download

Hybrid Intelligence: Menschliche und künstliche Intelligenz

Der Begriff “Intelligenz” wird sehr oft und in verschiedenen Zusammenhängen verwendet. Es geht einerseits um die menschliche Intelligenz (Human Intelligence) und andererseits auch um Künstliche Intelligenz (KI) oder Artificial Intelligence (AI). Dabei werden immer wieder (dumme Fragen) zum Entweder-Oder gestellt – also in dem Sinne: Was ist besser, menschliche Intelligenz oder Künstliche Intelligenz?

Wir leben in einer Zeit der reflexiven Modernisierung, bei der es zu Entgrenzung und Kontingenz in allen Bereichen kommt – auch bei dem Konstrukt “Intelligenz”. Es ist daher nicht erstaunlich, dass sich das Center for Hybrid Intelligence gerade damit befasst, wie menschliche und künstliche Intelligenz in einer hybriden Form betrachtet werden können.

Hybrid Intelligence (HI) is defined as the ability to achieve complex goals by combining human and artificial intelligence, thereby reaching superior results to those each of them could have accomplished separately, and continuously improve by learning from each other (Dellermann et al. 2019)”.

Auf der Website wird darauf hingewiesen, dass divergentes und konvergentes Denken für kreative Prozesse wichtig sind. Neben dem Begriff der “Intelligenz” kommt somit noch der Begriff “Kreativität” hinzu. Geht man davon aus, dass diese Begriffe ineinander spielen, vom jeweiligen Kontext abhängig sind, und auf verschiedenen Ebenen wie Individuum, Gruppe, Organisation und Netzwerk wirksam werden können wird deutlich, wie umfangreich der Forschungsgegenstand ist.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer und Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk. Dissertation, Verlag Dr. Kovac.

Zukunftsbilder für Arbeit in Büros und Produktion

In den verschiedenen wissenschaftlichen Diskussionen geht es einerseits um die Digitalisierungsstrategie und andererseits um die Aufgabenkomplexität. Die folgende Übersicht zeigt beispielhaft, welche Zukunftsbilder sich daraus für Büros und Produktion ergeben.

PolarisierungUpgrading
AssistenzAngelerntenarbeitFach- und Wissensarbeit
SubstitutionVollautomatisierungProzessbetreuung
Quelle: Korge et al. 2016, zitiert in Korge, A.; Marrenbach, D. (2018:9)

“Ausgangspunkt für die Konzeption der Zukunftsbilder sind zwei aktuelle, wissenschaftliche Diskussionen. Die erste Diskussion betrachtet die Digitalisierungsstrategie. Sie unterscheidet, ob die Digitalisierung eine Ersetzung (Substitution) menschlicher Arbeit oder eine Unterstützung des arbeitenden Menschen (Assistenz) anstrebt. Die zweite Diskussion behandelt die Entwicklung von Aufgabenkomplexität und Qualifikationen bei den Beschäftigten. Unterschieden wird zwischen Aufwertung (Upgrading) und Aufspaltung (Polarisierung)” (Korge/Marrenbach 2018:9).

Interessant dabei ist, dass die einzelnen Zukunftsbilder gut voneinander abgrenzbar sind, und zu verschiedenen Anforderungen an die Mitarbeiter und an die Organisation führen. Weiterhin ist davon auszugehen, dass Unternehmen oftmals ein Mix der verschiedenen Arbeitsfelder zu bewältigen haben, was zu einer ambidexteren Organisation führt. Siehe dazu auch Projektmanagement: Agil, hybrid, klassisch?

Was sind eigentlich mögliche Aufgabengebiete der Künstlichen Intelligenz?

Group of people with devices in hands working together as symbol of networking and communication

Die Geburtsstunde von “Künstlicher Intelligenz” geht auf einen Konferenzbeitrag von McCarthy im Jahr 1955 zurück. In der Zwischenzeit gibt es durch die vielen neuen technischen Möglichkeiten zwar immer wieder Definitionsversuche, doch immer noch keine einheitliche und anerkannte Definition. Was allerdings klar erscheint sind die verschiedenen Aufgabengebiete, die für eine Künstliche Intelligenz geeignet erscheinen. Russell und Norvig unterscheiden hier acht Aufgabengebiete (vgl. Russell und Norvig 2012; Peissner et al. 2019), zitiert in Fraunhofer IAO 2020:11-12):

  • Lernen
  • Problemlösung durch Suchen
  • Planen
  • Robotik
  • Entscheidung
  • Wissensrepräsentation
  • Wahrnehmung
  • Spracherkennung

Anhand dieser Auflistung wird deutlich, dass Künstliche Intelligenz viele Tätigkeiten in unserem gesellschaftlichen und wirtschaftlichen Leben beeinflussen kann. Es geht hier allerdings nicht immer um komplette Jobs, die infrage gestellt werden, sondern auch um Tätigkeitsportfolios, die in einzelnen Jobs oder in Prozessketten von KI profitieren können. Hier ein Beispiel:

Populär wurden in jüngster Zeit Anwendungen wie beispielsweise KI-gestützte »Chatbots«. Dies sind Programme, die eine Konversation mit Nutzern führen können. Social Chatbots agieren in sozialen Netzwerken wie Facebook und Twitter (vgl. Edwards 2016). Anwendungsgebiete sind u.a. Bestellungen (z.B. Pizza-Service), Antworten auf Kundenanfragen zu Prozessen (Paketdienste) und Bearbeitung von Beschwerden (Fraunhofer IAO 2020:13).

Intelligente Organisation oder Organisationale Intelligenz? Was soll das sein?

Image by Gerd Altmann from Pixabay

Wenn wir über Intelligenz oder Dummheit sprechen, geht es oft einerseits um intelligente Menschen und anderseits um intelligente maschinelle Systeme wie maschinelles Lernen oder Künstliche Intelligenz. In Unternehmen/Organisationen oder weiter gefasst, in Systemen geht es allerdings auch darum, die verschiedenen Facetten der Intelligenz zu fördern und für Werte zu nutzen. Bei Organisationen kommen die beiden Perspektiven “Intelligent Organization” und “Organizational Intelligence” ins Spiel.

Within this field two major research communities can be found. The first on has been established around the annual Hawai International Conference on System Sciences (HICSS), starting from a tutorial on “Intelligent Organizations” presented by G. P. Huber in 1987. The second has its roots in Japan, where T. Matsuda is developing towards a holistic approach of what he calls “Organizational Intelligence” (…). In contrast of others he [Matsuda 1988, 1991, 1992] stresses that machine learning is an integral part of the intelligence of an organization (vgl. Kirn 1996:141).

Die Organisationale Intelligence nach Matsuda integriert menschliche Intelligenz und (heute) Künstliche Intelligenz. Ich würde dabei noch ergänzen, dass dies nicht nur auf der organisationalen Ebene, sondern auch auf der individuellen Ebene, bei Teams und in Netzwerken außerhalb der Organisation eine Rolle spielt. In Meinem Buch Freund, R. (2011): das Konzept der Multiplen Kompetenz auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk habe ich diesen Ansatz auch mit Hilfe der Theorie der Multiplen Intelligenzen beschrieben.