Arbeit 4.0: Chancen, die sich aus den neuen technischen Möglichkeiten ergeben

Wenn es um die neuen Arbeitsformen geht, wird das oft mit Arbeit 1.0 bis Arbeit 4.0 beschrieben. Der Fokus liegt dabei auf der Arbeit 4.0, obwohl es in der Gesellschaft, und damit auch in Organisationen, häufig mehrere der genannten Arbeitsformen gibt – also einen Mix von Arbeit 1.0, Arbeit 2.0, Arbeit 3.0 und Arbeit 4.0.

Dennoch ist aufgrund des veränderten Umfelds klar, dass der Anteil von Arbeit 4.0 zunimmt. Bei dieser Arbeitsform geht es um eine neuartige Form der Kollaboration, also der Zusammenarbeit, die durch neue technologische Möglichkeiten entsteht, ja getrieben wird. Technologie ist also ein Enabler (Befähiger), der auch zu mehr Raum für Kreativität führen kann. Dazu habe ich folgenden Text gefunden:

Der schwierige Teil beim neuen Arbeiten liegt weder in der Ausrufung neuer Paradigmen noch in der Qualifikation, neue Tools bedienen zu können. Natürlich braucht es beides. Aber erst danach wird es richtig spannend (…). Es sind die Folgen, die sich aus den neuen technischen Möglichkeiten ergeben (…). Dafür entsteht Raum für mehr Kreativität, mehr Synergie und mehr Effizienz. Kurz gesagt: Wir können mehr Energie in „die eigentliche Arbeit“ stecken” (Muuß-Merholz, J. (2024): Pre-empathische Zusammenarbeit als Future Skill. Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.).

Durch den Einsatz von moderner Technologie (inkl. Künstlicher Intelligenz), können Routineprozesse automatisiert und die Kollaboration auf allen Ebenen verbessert/intensiviert werden. Das schafft Freiräume für mehr Kreativität und damit möglicherweise auch zu mehr Innovationen. Diese Chancen “für die eigentliche Arbeit” sollten – bei aller Kritik an den neuen Technologien – erkannt und genutzt werden. Siehe dazu auch New Work im Projektmanagement: auf den Ebenen people, Places und Tools.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Persönliche und soziale Kompetenzen von Projektmanagern und KI-Systeme

Es ist unzweifelhaft, dass Künstliche Intelligenz (KI) unsere Arbeitswelt immer stärker beeinflussen/durchdringen wird – auch das Projektmanagement. In dem Beitrag Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI) wurde schon deutlich, dass Projektmanager einen Großteil ihrer praktischen Projektarbeit mit sozialen Interaktionsprozessen zu tun haben. Um diesen praktischen und den eher theoretischen Teil der Projektarbeit bewältigen zu können, sind entsprechende Kompetenzen erforderlich. In der Individual Competence Baseline (ICB 4.0) der International Project Management Association (IPMA) sind unter “People” persönliche und soziale Kompetenzen genannt.

“Dies ist der Kompetenzbereich der persönlichen und sozialen Kompetenzen (im englischen kurz ‚People‘ genannt). Die in diesem Kompetenzbereich differenziert aufgeführten Einzelkompetenzen (Selbstreflexion und Selbstmanagement, Persönliche Integrität und Verlässlichkeit, Persönliche Kommunikation, Beziehungen und Engagement, Führung, Teamarbeit, Konflikte und Krisen, Vielseitigkeit, Verhandlungen, Ergebnisorientierung) schätzt die IPMA® als notwendige „People-Skills“ eines Projektmanagers ein. Dem sozialen Miteinander wird also für den Projekterfolg ein hoher Stellenwert zugesprochen. Betrachtet man in diesem Kontext die Art und Weise, in der die Interaktionsmöglichkeiten von KI-Systemen auf Algorithmen beruhen, so wird das beschränkte Potenzial der KI bzgl. der People-Skills deutlich” (Barth/Sarstedt 2024).

Es wird auch hier wieder deutlich, dass die heutigen KI-Systeme bei großer sozialer Komplexität noch ihre Grenzen haben. Es geht im modernen Projektmanagement nicht nur um die jeweiligen Vorgehensmodelle (plangetrieben, hybrid, agil), sondern verstärkt um das angemessene Zusammenspiel der Dimensionen soziale Komplexität, Vorgehensmodell, KI-System.

Dabei taucht wieder “Kompetenz” als Schlüsselbegriff für die Bewältigung heutiger komplexer Arbeitssituationen auf. Ich tendiere hier – abweichend vom Kompetenzverständnis der ICB 4.0 – zu einem Kompetenzverständnis das Kompetenz als Selbstorganisationsdisposition beschreibt – und zwar auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.

Siehe dazu auch  Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Künstliche Intelligenz bei Potenzialprojekten

Künstliche Intelligenz (KI) bietet auf allen gesellschaftlichen Ebenen Anwendungsmöglichkeiten – auch im Projektmanagement. Dabei stellt sich die Frage, wie Künstliche Intelligenz (KI) bei verschiedenen Projekten eingesetzt werden kann. Barth/Sarstedt (2024) schlagen dazu in Anlehnung an Kuster (2022) vor, verschiedene Projektkategorien zu unterscheiden: Standardprojekte, Potenzialprojekte, Akzeptanzprojekte und Pionierprojekte.

Für Potenzialprojekte ist die soziale Komplexität wiederum recht gering, jedoch sind die Projektziele und die zu beschreitenden Lösungswege zu Beginn des Projektes nur recht vage definiert. Als Beispiel können einfache Kunstprojekte oder die Entwicklung eines neuen Werkstoffs durch ein Expertenteam gelten. Die verschiedenen Ansätze und Lösungswege sind zu durchdenken und auszutesten. Eine KI kann hier systematisch vorgehen und durch Recherche von existierenden Daten eine auf der Vergangenheit basierende Lösung anbieten. Ein „Erspüren“ der Zukunft (das sogenannte Bauchgefühl) und die erfinderische Sicht in die Zukunft (den sogenannten „educated guess“) kann eine KI zum heutigen Zeitpunkt jedoch nur sehr bedingt bis gar nicht einbringen” (ebd).

Auch in dem Beitrag Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte wird deutlich, um welche Aufgaben es dabei geht. Siehe dazu auch Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI).

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.

Künstliche Intelligenz bei Standardprojekten

Künstliche Intelligenz (KI) bietet auf allen gesellschaftlichen Ebenen Anwendungsmöglichkeiten – auch im Projektmanagement. Dabei stellt sich die Frage, wie Künstliche Intelligenz (KI) bei verschiedenen Projekten eingesetzt werden kann. Barth/Sarstedt (2024) schlagen dazu in Anlehnung an Kuster (2022) vor, verschiedene Projektkategorien zu unterscheiden – eine davon kann die Kategorie “Standardprojekte” sein.

Standardprojekte sind eine Projektkategorie, die sich durch eine eher geringe Soziale Komplexität, und eine relativ gute Bestimmbarkeit von Aufgabe und Lösungsweg auszeichnen. Künstliche Intelligenz kann bei solchen Projekten als “Agierende Einheit” (vgl. Barth/Sarstedt 2024) bezeichnet werden. Die Autoren meinen damit, dass die Künstliche Intelligenz im Extremfall Projektmanager bei Standardprojekten komplett ersetzen kann” (ebd.).

Auch in dem Beitrag Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte wird deutlich, um welche Aufgaben es dabei geht. Siehe dazu auch Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI).

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI)

AdobeStock_527653115

Die Rolle eines Projektmanagers, einer Projektmanagerin, ist vielschichtig. In der Theorie gibt es viele Themen die abgedeckt werden sollen. Dazu zählen planerische, kontrollierende und steuernde Tätigkeiten, Kommunikation und Organisation. Darüber hinaus gehören auch Führungsaufgaben, Weisungen und Entscheidungen zum Arbeitsfeld. Zu all den genannten Punkten gibt es in der Literatur viele Hinweise zur möglichen Umsetzung, doch kommen in der Praxis viele soziale Interaktionen hinzu.

Eigene Darstellung – Quelle: Barth/Sarstedt (2024)

“Ohne soziales Miteinander und soziale Interaktionsprozesse ist kein Projekt zielführend zum Abschluss zu bringen. Der Begriff sozial ist aus dem lat. „sozialis“ abgeleitet, was so viel wie gesellschaftlich, gemeinnützig bzw. hilfsbereit bedeuten kann. Die soziale Interaktion sollte demnach auch innerhalb von einem Projekt von gemeinschaftlichem und sich unterstützendem Handeln geprägt sein” (Barth/Sarstedt 2024).

Betrachten wir die Prozesse in der Realität (Abbildung) so wird deutlich, dass neben den technischen auch viele sozialen Interaktionsprozesse für den Erfolg von Projekten nötig sind. Beispielsweise zählen kognitive und menschliche Sensorik zu einzusetzen, Mensch zu sein (z.B. Emotionen zu zeigen) oder auch Verantwortung zu tragen. zu den jeweiligen Punkten sind in der Abbildung weitere Unterpunkte genannt, auf die ich hier nicht weiter eingehen möchte.

Die gesamten sozialen Interaktionsprozesse können durch “kognitive Empathie und Fingerspitzengefühl” (ebd.) erschlossen werden. An dieser Stelle führt das zu der Frage, inwieweit Künstliche Intelligenz (KI) solche Bereiche abdecken kann. Aktuelle sieht es so aus, dass der Nutzen von Künstlicher Intelligenz (KI) zunächst auf den Punkten liegt, die auf der Seite “Theorie” stehen. Auf der Seite “Praxis” stehen allerdings viele Punkte, die von Künstlicher Intelligenz (aktuell noch) nicht abgedeckt werden. Es wird als Projektmanager daher darauf ankommen, beide Potentiale für das Projektmanagement sinnvoll und angemessen zu nutzen. Siehe dazu auch Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.

Informationen zu den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten, finden Sie auf unserer Lernplattform.

Künstliche Intelligenz: Vorteile von Open-Source-Modellen

Was als Open-Source begann, wird oft zu einem wirtschaftlich getriebenen Closed-Source-Modell. Das Beispiel OpenAI zeigt, wie das funktioniert. Zunächst war OpenAI Open-Source basiert und wurde dann unter dem Einfluss und dem Kapital von Microsoft Schritt für Schritt zu einem Closed-Source KI-System, das sich der Konzern gut bezahlen lässt. Es ist zu vermuten, dass dieser Weg auch von anderen Konzernen beschritten wird, sobald sich die Anwender an die zunächst freien Funktionen gewöhnt haben, wodurch sich deren Switching-Cost pro Anwender erhöhen. Diese Entwicklung wird allerdings in dem aktuellen EFI Gutachten (2024) kritisch gesehen, und hervorgehoben, welche Vorteile Open-Source KI-Modelle haben:

“Open-Source-Modelle können den Wettbewerb stärken und bieten mehr Innovationsmöglichkeiten als Closed-Source-Modelle, da sie in der Regel besser anpassbar sind. Zudem können Akteure aus Wissenschaft und Wirtschaft, insbesondere Startups und KMU, von den verhältnismäßig niedrigen Kosten der Open-Source-Nutzung profitieren und
vorhandene Open-Source-Modelle einsetzen, um domänenspezifisch zu innovieren und die Produktivität zu steigern. Dies erhöht den Wettbewerb und die Angebotsvielfalt und beugt somit Monopolisierungstendenzen vor. Darüber hinaus haben Open-Source-Modelle den Vorteil, dass Programmierfehler oder potenzielle Verzerrungen, die bei der Analyse von Daten entstehen, schneller identifiziert und behoben werden können. Dies ist der Transparenz und Zuverlässigkeit von KI-Modellen förderlich” (EFI Gutachten 2024:88).

Jede Organisation sollte sich genau überlegen, welche KI-Strategie geeignet ist, mittel- und langfristig die Chancen von KI-Modellen zu nutzen. Wir nutzen Open-Source-KI-Modelle in unserer Nextcloud und entwickeln dadurch eine KI-Strategie, die zu unseren Anforderungen passt. Wie weit wir Closed-Source KI-Modelle mit integrieren, entscheiden wir je nach Bedarf mit Hilfe des integrierten Ethical KI-Rankings.

Nextcloud-Assistent – Lokales LLM als Assistent in Nextcloud integriert

Nextcloud ist eine Open Source Anwendung, die durch verschiedene Apps an die individuellen Anforderungen angepasst werden kann. Damit die Arbeit noch zeitgemäßer, und somit KI-unterstützt durchgeführt werden kann, wurde 2023 die erste Version des Nextcloud Assistenten veröffentlicht. Wir haben nun die Version 1.03 vom Dezember 2023 bei uns problemlos installiert.

Das Symbol für den Nextcloud Assistenten erscheint in der oberen Leiste des Dashboards und in allen Apps, die in unserer Nextcloud verwendet werden. Wie in der Abbildung zu sehen ist, können dabei Context Chat, Free Prompt oder Generate Headline aufgerufen werden. Weitere Funktionen, die sich hinter den drei Punkten verbergen sind Summarize und Reformulate.

Es ist wirklich erstaunlich, wie dynamisch sich Nextcloud entwickelt und die vielfältigen KI-Möglichkeiten integriert – alles Open Source.

Künstliche Intelligenz – Menschliche Intelligenz – Intelligente Problemlösungen

In der heute sehr stark vernetzten Welt kommt es darauf an, Muster zu erkennen, um die anstehenden komplexen Problemlösungen zu entwickeln. die neuen Fragestellungen können oftmals nicht mehr mit den bisher so erfolgreichen Denkmustern gelöst werden. Das immer wieder propagierte neue Mindset integriert die alten Denkmuster und entwickelt diese weiter. Ein zentraler Punkt in vielfältig vernetzten Systemen ist das Erkennen von schwachen Signalen, oder von Mustern. Diese Eigenschaften werden der Künstlichen Intelligenz und der Menschlichen Intelligenz zugeschrieben. Im Zusammenspiel können dabei viele intelligente Problemlösungen generiert werden.

“Eine der zentralen Fragen der Zukunft könnte nicht sein, wie viele künstliche intelligente Lösungen in den Systemen stecken, sondern wie viel menschliche Intelligenz und welches Mindset und Bewusstsein vor dem Computer sitzt und wie beide miteinander in Beziehung stehen und verbunden sind” (Linder-Hofmann (2024): KI, agiles Mindset und integral -systemische Perspektiven. In: Bernert/Scheurer/Wehnes (Hrsg.): KI in der Projektwirtschaft).

Die Mustererkennung kann durch Maschinen wie der Künstlichen Intelligenz, oder durch den Menschen mit seinen besonderen Intelligenzen/Kompetenzen erfolgen. An dieser Stelle sollte allerdings auch geklärt werden, welche menschliche Intelligenz gemeint ist. Es gibt hier durchaus Ansätze die zeigen, das möglicherweise der immer noch favorisierte Intelligenz-Quotient (IQ) keine Passung zu dem hier kurz aufgezeigten Themenfeld hat. Siehe dazu auch
Künstliche Intelligenz und Menschliche Intelligenz
Intelligenztheorie: Anmerkungen zu Sternbergs Triarchischen Theorie und Gardners Multiple Intelligenzen Theorie
Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.

Nextcloud: Geeignete KI-Apps selbst auswählen – ein Beispiel

Anwendungen zur Künstliche Intelligenz (KI) gibt es in der Zwischenzeit “wie Sand am Meer”. Dabei decken die kommerziellen Anwendungen einen Großteil des Marktes ab. Immer mehr Organisationen sehen darin allerdings auch Risiken, sodass Open Source Anwendungen , wie z.B. Nextcloud, in den Fokus rücken.

Dabei ist Nextcloud als Kollaborationsplattform mit den Anwendungen zu Dokumenten, Bildern, Webkonferenzen (Talk), Whiteboards, Tasks- bzw. KANBAN Boards, Open Project usw. in der Lage an jeder Stelle der verschiedenen Anwendungen KI-Apps aufzurufen (Smart Picker), die ebenfalls Open Source basiert sind.

Diese KI-Apps sind hier nicht vorgegeben, sondern können je nach Organisation zusammengestellt werden. Die Möglichkeit der eigenen Konfiguration von KI-Apps, die dann auch noch mit Hilfe von Ampelfarben (Rot-Gelb-Grün) charakterisiert sind, ergibt enorme eigene Gestaltungsspielräume.

Die Abbildung zeigt beispielhaft einen Screenshot von unserer Nextcloud, in der ich DECK als Taskboard (KANBAN Board) aufgerufen habe. Innerhalb eines Tasks (Tickets) kann ich im Textfeld mit Hilfe des Smart Pickers verschiedene Anwendungen aufrufen. In dem Beispiel habe ich die KI-App Whisper ausgewählt (AI speech-to-text) mit deren Hilfe ich jetzt einen gesprochen Text erfassen kann. Nextcloud charakterisiert diese Anwendung mit Gelb (Rot-Orange-Gelb-Grün). Ziel der Integration vieler Open Source Anwendungen in einer modernen Kollaborationsplattform ist der Souveräne Arbeitsplatz.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Künstliche Intelligenz (KI) im Projektmanagement: Routine und Projektarbeit

Routinemanagement und Projektmanagement hängen in Organisationen eng zusammen. In der Vergangenheit war das Routinemanagement dominierend. Es ging dabei um Effektivität und Effizienz in den Abläufen und Prozessen, die relativ standardisiert durchgeführt wurden. Durch das nicht mehr so stabile Umfeld kam es anschließend zu kleinen Veränderungen in den Prozessen, die durch Kontinuierliche Verbesserungsprozesse (KVP) optimiert wurden.

Der Trend zur Individualisierung und Personalisierung, und die immer stärkere Vernetzung von allen Dingen und Personen führen nun zu einer Komplexität, die zu mehr Selbstorganisation in temporären Netzen führt, und somit zu mehr Projekten mit dem dazugehörenden Projektmanagement.

Die Automatisierung von wiederkehrenden und zeitaufwändigen Aufgaben kann in Zukunft immer mehr von Künstlicher Intelligenz (KI) übernommen werden. Dabei bietet sich für Mitarbeiter die einmalige Chance, sich stärker auf das kreative Lösen von komplexen Problemen zu konzentrieren. Diese Zusammenhänge können auch direkt auf das Projektmanagement mit seinen vielfältigen Anforderungen übertragen werden.

“Doch die KI bietet noch viel mehr als nur Planung und Ressourcenmanagement. Eine der größten Stärken der KI im Projektalltag liegt in der Automatisierung von wiederkehrenden und zeitaufwändigen Aufgaben. KI-basierte Tools können die Erfassung und Analyse von Daten, das Reporting, die Kommunikation und die Verwaltung von Dokumenten automatisieren. Diese Automatisierung führt zu erheblichen Effizienzsteigerungen, da Projektmanager ihre Zeit und Energie auf strategische Entscheidungen und die Lösung komplexer Probleme konzentrieren können. Dadurch verkürzen sich Projektzeiten, die Qualität steigt und die Kosten werden optimiert (Barton / Müller, S. 161)” (Vodatinskyj (2023): Die Revolution des Projektmanagements durch Künstliche Intelligenz, in: projektmanagementaktuell 05/2023).

Mehr Blogbeiträge zu “Künstliche Intelligenz” finden Sie hier.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.