In den Diskussionen um Künstliche Intelligenz (Artificial Intelligence) werden die Tech-Riesen nicht müde zu behaupten, dass Künstliche Intelligenz die Menschliche Intelligenz ebenbürtig ist, und es somit eine Generelle Künstliche Intelligenz (AGI: Artificial General Intelligence) geben wird.
Dabei wird allerdings nie wirklich geklärt, was unter der Menschlichen Intelligenz verstanden wird. Wenn es der Intelligenz-Quotient (IQ) ist, dann haben schon verschiedene Tests gezeigt, dass KI-Modelle einen IQ erreichen können, der höher ist als bei dem Durchschnitt der Menschen. Siehe dazu OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?Heißt das, dass das KI-Modell dann intelligenter ist als ein Mensch? Viele Experten bezweifeln das:
“Most experts agree that artificial general intelligence (AGI), which would allow for the creation of machines that can basically mimic or supersede human intelligence on a wide range of varying tasks, is currently out of reach and that it may still take hundreds of years or more to develop AGI, if it can ever be developed. Therefore, in this chapter, “digitalization” means computerization and adoption of (narrow) artificial intelligence” (Samaan 2024, in Werthner et al (eds.) 2024, in Anlehnung an https://rodneybrooks.com/agi-has-been-delayed/).
Es wird meines Erachtens Zeit, dass wir Menschliche Intelligenz nicht nur auf den IQ-Wert begrenzen, sondern entgrenzen. Die Theorie der Multiplen Intelligenzen hat hier gegenüber dem IQ eine bessere Passung zu den aktuellen Entwicklungen. Den Vergleich der Künstlichen Intelligenz mit der Menschlichen Intelligenz nach Howard Gardner wäre damit ein Kategorienfehler.
Der Begriff “Intelligenz” wird in der aktuellen Diskussion um Künstliche Intelligenz (Artificial Intelligence) immer wichtiger. Dabei gibt es oft zwei Argumentations-Pole, die sich scheinbar unüberbrückbar gegenüberstehen:
Zunächst ist da der Standpunkt, dass Künstliche Intelligenz (Technologie) in Zukunft auch die Menschliche Intelligenz umfassen wird. Demgegenüber gibt es die Perspektive, dass die Menschliche Intelligenz Elemente enthält, die (noch) nicht von Technologie (Künstlicher Intelligenz) ersetzt werden kann.
In der Zwischenzeit setzt sich – wie so oft – immer stärker die Auffassung durch, dass es durchaus Sinn machen kann, eine Art Hybride Intelligenz zu thematisieren, also eine Art Schnittmenge zwischen Menschlicher und Künstlicher Intelligenz. In der Abbildung ist diese Sicht auf Intelligenz dargestellt.
“Put simply, humans possess “general intelligence” in being able to comprehend and analyze various situations and stimuli, to ideate, create and imagine. The intelligence projected by AI systems is predominantly task-centered (Narayanan and Kapoor, 2022)” (Hossein Jarrahi et al. 2022).
Ergänzen möchte ich an dieser Stelle, dass hier der Begriff “general intelligence” bei der Menschlichen Intelligenz wohl auf den Intelligenz-Quotienten verweist, der allerdings in der Gesamtdiskussion wenig hilfreich erscheint. In dem Beitrag OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? wird deutlich, dass aktuelle KI-Modelle schon locker entsprechende Intelligenz-Tests bestehen.
Meines Erachtens scheint es immer wichtiger zu sein, das Verständnis der Menschlichen Intelligenz im Sinne von Multiplen Intelligenzen nach Howard Gardner zu erweitern Dieses Verständnis hätte eine bessere Passung zu der aktuellen Entwicklung.
AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.
Grundsätzlich gibt es verschiedene Perspektiven auf Künstliche Intelligenz (AI: Artificial Intelligence). Die aktuell dominierende Perspektive ist die, AI aus der Perspektive des Ingenieurwesens zu betrachten (Siehe Tabelle). Dabei wird davon ausgegangen, dass Intelligenz in AI-Systemen nachgebildet werden kann. Intelligenz wird dabei oftmals mit dem Intelligenz-Quotienten gleich gesetzt, der in Tests (Intelligenz-Tests) mit Hilfe einer Zahl, dem Intelligenz-Quotienten IQ dargestellt werden kann. Bei dieser Betrachtung auf Intelligenz erstaunt es daher nicht, dass die leistungsfähigsten AI-Systeme locker einen hohen IQ-Wert erreichen. Siehe dazu OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?.
Idea/Description
Lable
Intelligence can be recreated in artificial systems AI-as-engineering
AI-as-Engineering
Cognition is, or can be understood as, a form of computation AI-as-psychology (a.k.a. computationalism)
AI-as-Psychology (a.k.a. computationalism)
Humans can be replaced by artificial systems AI-as-ideology
AI-as-Ideology
The label ‘AI’ helps to sell technologies and gain funding
AI-as-Marketing
Quelle: van Roij et al. (2024): Reclaiming AI as a Theoretical Tool for Cognitive Science
Forscher haben nun in einem Paper dazu Stellung genommen und verschiedene Situationen mit ingenieurwissenschaftlichen Ansätzen überprüft. Das Ergebnis ist ernüchternd: AI-as-Engineering führt zu unlösbaren Problemen. Unlösbar in dem Sinne, dass die menschliche Intelligenz in vielen Facetten ingenieurwissenschaftlich nicht abgebildet werden kann.
“This means that any factual AI systems created in the short-run are at best decoys. When we think these systems capture something deep about ourselves and our thinking, we induce distorted and impoverished images of ourselves and our cognition. In other words, AI in current practice is deteriorating our theoretical understanding of cognition rather than advancing and enhancing it. The situation could be remediated by releasing the grip of the currently dominant view on AI and by returning to the idea of AI as a theoretical tool for cognitive science. In reclaiming this older idea of AI, however, it is important not to repeat conceptual mistakes of the past (and present) that brought us to where we are today” (ebd.).
AI kann natürlich viele Probleme lösen, die vorher so nicht, oder nur zu hohen Kosten lösbar waren. Das heißt allerdings noch lange nicht, dass die vielfältigen kognitiven und psychologischen Dispositionen von Menschen und ihre gesellschaftlichen Netzwerke genau so abgebildet werden können. Es ist verständlich, dass uns die Tech-Industrie das glauben machen will, doch sollten wir die Technologie stärker in den Dienst der Menschen stellen. Wenn wir das nicht machen, gehen die Profite an die großen Tech-Konzerne, wobei die gesellschaftlichen Auswirkungen bei den jeweiligen Ländern hängen bleiben. Eine Gesellschaft ist keine profitorientierte Organisation.
Wenn es um zu lösende Probleme in einem beruflichen Umfeld geht, so gibt es dabei sehr viele einzelne Aufgaben, die im Zusammenspiel von Menschen, Maschinen und Künstlicher Intelligenz gelöst werden können. Welche “Konfiguration” dabei angemessen erscheint, ist Abhängig vom Kontext, dem Task (Aufgabe) und den vorhandenen Problemlösungspotentialen. An dieser Stelle kommt der Begriff Hybride Intelligenz ins Spiel.
“Dellermann, Ebel, Söllner und Leimeister (2019: 638) definieren hybride Intelligenz als die Fähigkeit, komplexe Ziele durch die Kombination menschlicher und künstlicher Intelligenz zu erreichen, kontinuierlich voneinander zu lernen und dabei Ergebnisse zu produzieren, die über das hinaus gehen, was KI oder Mensch allein hätten erreichen können. Nicht immer lässt sich hierbei trennscharf zwischen Automation und Augmentation unterscheiden (Raisch & Krakowski, 2021). Der Grad der Automation bzw. Augmentation hängt immer individuell von der jeweiligen zu lösenden Aufgabe ab” (Piller et al. 2024, in Koller et al. 2024: Die Zukunft der Grenzenlosen Unternehmung).
Was allerdings unter “Menschlicher Intelligenz” verstanden wird, ist dabei nicht weiter erläutert. Ich gehe daher davon aus, dass von dem bekannten Intelligenzquotienten (IQ) ausgegangen wird, der sich in einer Zahl manifestiert. Dass das im Zusammenhang mit den Entwicklungen bei der Künstlichen Intelligenz kritisch sein kann, wird in dem Blogbeitrag OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? deutlich.
Adobe: AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.
In den Diskussionen um Künstliche Intelligenz (KI) – oder englischsprachig Artificial Intelligence (AI) – führt die Systembetrachtung zu einer Art Generellen Künstlichen Intelligenz – General Artificial Intelligence (GAI) oder auch Artificial General Intelligence (AGI). Darunter ist folgendes zu verstehen:
“A system believed to perform (solve) domain-general cognitive tasks (problems; what some may also call AGI). … [it seems to] leave little room for AI as a theoretical tool for cognitive science. The reason is that BigTech currently dominates the narrative, with a focus on technological progress and impressive machine learning applications” (van Rooij et al. 2024).
Es geht also bei AGI umeine von Technologie dominierte generelle kognitive Problemlöse-Fähigkeiten eines Systems. Diese Sichtweise liegt in der Tradition von Simon, Shaw und Newell. die 1957 die Software “General problem Solver” entwickelten (Quelle: Wikipedia).
Das erinnert insgesamt stark an die Diskussionen, bei denen es um Menschliche Intelligenz geht. Auch hier steht immer wieder die Frage im Raum, ob es sich bei der Menschlichen Intelligenz um eine Generelle Intelligenz handelt, die mit einem Intelligenz-Quotienten (IQ) bestimmt werden kann, oder ob es um Multiple Intelligenzen im Sinne von Howard Gardner oder auch Sternberg etc. geht. Dabei geht Howard Gardner bei Intelligenz bewusst von einem “biopsychologisches Potenzial ” aus, was Künstliche Intelligenz wiederum aus seiner Sicht ein Kategorienfehler zu sein scheint.
Wenn wir also den Trend von einer Generellen Menschlichen Intelligenz zu eher Multiplen Intelligenzen unterstellen, sollten wir dann nicht statt Artificial General Intelligence eher von Multiple Artificial Intelligence (MAI) ausgehen?
Wenn Sie diesen Begriff in Google eingeben, werden Sie einige Treffer erhalten. Dabei geht es allerdings hauptsächlich um eine Art Vielfalt der verschiedenen AI-Anwendungen. Ich meine mit dem Begriff Multiple Artificial Intelligences ein hybrides Intelligenz-Konstrukt, das die Menschliche und Künstliche Intelligenz kontextbezogen für komplexe Problemlösungen in einem bestimmten kulturellen Umfeld beschreiben kann..
Der Begriff “Künstliche Intelligenz” hat uns wieder darauf gestoßen, dass es Sinn macht, sich auch mit der Menschlichen Intelligenz zu befassen. Entscheidend dabei ist, was unter der Menschlichen Intelligenz verstanden wird, und was unter einer gemeinsamen, eher Kollektiven Intelligenz verstanden wird.
Wie die Leser unseres Blog wissen, tendieren wir dazu, wie Howard Gardner von Multiplen Intelligenzen zu sprechen, was einer Ergänzung/Entgrenzung des klassischen Intelligenz-Quotienten entsprechen würde. Multiple Intelligenzen sind nach Howard Gardner “biopsychologisches Potential”, sodass der Begriff “Künstliche Intelligenz” eher ein Kategorienfehler ist. Siehe dazu auch OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Intelligenz kann dabei auf der individuellen Ebene, auf der Gruppenebene, auf der Ebene der Organisation, oder auch in Netzwerken thematisiert werden.
In diesem Beitrag soll es hauptsächlich um eine gemeinschaftliche, Kollektive Intelligenz gehen, die nicht einfach eine Menge von Individuen bedeutet, sondern erst unter bestimmten Bedingungen entsteht. Dazu gab es in der Vergangenheit weitere Begriffe wie Wisdom of Crowds, Schwarmintelligenz und eben Kollektive Intelligenz, die sich in ihrer Interaktionsqualität von Kumulation/Aggregation bis hin zu Interaktion/Kreation unterscheiden (Abbildung). Diese Unterschiede beschreibt Feldhusen (2021) wie folgt:
“Vielmehr entsteht Kollektive Intelligenz durch die Qualität menschlicher Begegnung und ihres Design- bzw. Organisationsprozesses. Entscheidend ist, wie wir uns und anderen zuhören, Unterschiede wahrnehmen und verarbeiten, aufeinander eingehen, uns auf neue Perspektiven einlassen, miteinander Lösungen verhandeln, uns und dem Prozess der Interaktion Aufmerksamkeit schenken. Wie eingangs zitiert, sieht Gary Hamel die Führungskräfte der Zukunft als Architekten sozialer Systeme. Dies bedeutet für die meisten Mitarbeiter/innen und Führungskräfte einen tiefgreifenden Reife- und Entwicklungsprozess hin zu einer Haltung, die dem Gegenüber mindestens die gleiche Bedeutung beimisst wie dem Selbst” (Feldhusen, B. (2021): Kollektive Intelligenz und Psychologische Sicherheit: Haben wir Intelligenz im Gefühl?. Organisationsberatung Supervision Coach 28, 355–371 (2021). https://doi.org/10.1007/s11613-021-00719-2).
Wenn wir von Intelligenz sprechen geht es oft um den Intelligenz-Quotienten (IQ) bei Menschen, dessen Ergebnisse in einer Normalverteilung dargestellt werden. Der Wert für den IQ kann dabei aus unterschiedlichen Testverfahren bestimmt werden. Der Mensa Norway IQ-Test ist dafür ein Beispiel.
Maxim Lott hat die dort gestellten Fragen von verschiedenen KI-Anwendungen beantworten lassen. Das Ergebnis ist in der Abbildung zusehen. Das neu vorgestellte Modell “o1” von OpenAI schneidet hier mit 120 Punkten am besten ab. Was bedeutet das?
Da in den IQ-Tests oftmals eher logisch-mathematische Attribute abgefragt werden, ist das Ergebnis wenig überraschend. Es stellt sich aus meiner Sicht eher die Frage, ob der Intelligenz-Quotient (IQ) mit seinen in den letzten über 100 Jahren entwickelten Messverfahren geeignet ist, menschliche Intelligenz abzubilden.
Wird das Verständnis von Intelligenz erweitert (entgrenzt), so kommen Dimensionen wie Emotionale Intelligenz, Soziale Intelligenz usw. hinzu, die von einer KI-App nicht, oder nur bedingt abgebildet werden können.
Aus meiner Sicht bedeutet das Ergebnis (Siehe Abbildung) also nicht, dass Künstliche Intelligenz genau so intelligent – oder intelligenter – als ein Mensch ist, sondern dass das zugrundeliegende Intelligenz-Konstrukt (IQ) möglicherweise nicht passt. In der von Howard Gardner vorgeschlagenen Theorie der Multiplen Intelligenzen ist Intelligenz beispielsweise wie folgt beschrieben:
„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner 2002:46-47).
Die von Howard Gardner veröffentlichte Theorie der Multiplen Intelligenzen geht von relativ unabhängigen Intelligenzen aus. Die Anzahl hat sich dabei in den letzten Jahren von 7 auf 9 erweitert. Es ist in diesem Zusammenhang wichtig, dass Howard Gardner den Intelligenz-Begriff beispielsweise im Vergleich zu dem oftmals vorherrschenden psychometrischen Intelligenzkonstrukt (Beispiel: Intelligenz-Quotient / IQ) entgrenzt/erweitert.
(…) the predictive value of IQ measures had been found to be poor in situations requiring production and evaluation of new ideas (Feldman 1980: 89-90).
Wenn es also verschiedene Multiple Intelligenzen gibt, so kann durchaus die Frage gestellt werden, ob nicht eine davon den anderen überlegen ist. Genau diese Frage hat Howard Gardner in dem englischsprachigen Blogbeitrag Are Some Intelligences Superior to Others? vom 11.04.2023 mit einem klaren NEIN beantwortet. Es kann zwar vorkommen, dass in einer Situation die eine oder andere Intelligenz dominiert, in einer anderen Situation aber wiederum nicht.
In einem speziellen beruflichen Umfeld (Kontext, Domäne) zeigen sich immer mehrere Intelligenzen.
In diesem Sinne hat man diese Multiplen Intelligenzen nicht, sondern sie zeigen sich in intelligenten (komplexen) Problemlösungen.
In diesem Zusammenhang musss ich auch die Frage stellen, ob die Künstliche Intelligenz der Menschlichen Intelligenz, oder die Menschliche Intelligenz der Künstlichen Intelligenz überlegen ist. Dieses Thema werde ich in einem der folgenden Blogbeiträge (versuchen zu) beantworten.
Aktuell reden und schreiben viele zur Künstlichen Intelligenz, die sich praktisch umgesetzt in vielen Anwendungen, wie z.B. ChatGPT von OpenAI, zeigt. Haben wir “Intelligente IT-Systeme” und dumme Menschen? Wenn es um menschliche Intelligenz geht, kommt oft der vor mehr als 100 Jahren entwickelte Intelligenztest ins Spiel, mit dem dann zukünftige Möglichkeiten und Dispositionen vorhergesagt werden. Die folgende Passage beschreibt die Zusammenhänge etwas ausführlicher.
“Eine erste Entwicklungslinie soll hier aus heuristischen Gründen auf das Ende des 19. und Anfang des 20. Jahrhundert datiert werden. Ausgangspunkt ist die kausalmechanische Logik einer behavioristischen Entwicklungspsychologie, die den Körper wesentlich als Reiz-Reaktions-Maschine betrachtet. In dieser Logik entwickelte der französische Psychologe Alfred Binet 1905 gemeinsam mit dem Arzt Théodore Simon einen ersten sogenannten ´Intelligenztest´ (Liungman, 1976). Das mit der Psychometrie etablierte sehr lineare, planmäßig geregelte Mess- und Testregime verweist auf einige zentrale Merkmale von Vermessungs- respektive Prüfungspraktiken. Grundlegend zielt die Prüfung darauf ab, von der Summe einzelner aktueller Leistungsergebnisse eines Individuums auf die zukünftigen Möglichkeiten und Dispositionen bzw. auf die zukünftig erwartbare Leistungsfähigkeit schließen zu können. Aber der Psychometrie gilt nicht nur eine aktuelle Leistung als repräsentativ für ein Leistungsvermögen, sondern sie stellt durch ihre Orientierung am Modell der Normalverteilung zugleich die Kontrolle sozialer Relationen sicher: Die Intelligenzleistungen, die dem Einzelnen als Leistungen zugeschrieben werden, werden im Verhältnis zum Durchschnitt der Leistungen anderer angegeben und damit vergleichbar gemacht. Auf Basis derartiger Aussagen über ´Begabung´ und ´Intelligenz´ lassen sich institutionelle Selektionsprozesse und soziale Hierarchisierungen legitimieren (Bourdieu, 1993; Gould, 1988)” (Vater, S. (2023:255248).): Validierung und Neoliberalismus – selbstverantwortete Beschäftigungsfähigkeit als Lernergebnis, in: Schmid, M. (Hrsg.) (2023): Handbuch Validierung non-formal und informell erworbener Kompetenzen, S. 235-248).
Intelligenztests werden für berufliche/gesellschaftliche Selektionsprozesse genutzt, dabei haben diese ihren Ursprung in einer behavioristischen Logik und sollen Auskunft über zukünftige Dispositionen geben. Dieser Determinismus stößt auf Kritik. Siehe dazu auch Ursache – Wirkung: Die Intellektualistische Legende. Es wird immer wieder vorgeschlagen, das Konstrukt “Intelligenz” auszudifferenzieren. Folgender Text soll das beispielhaft aufzeigen:
“Inhaltlich hat sich das Intelligenzkonzept in den letzten 100 Jahren ausdifferenziert (vgl. Funke u. Vatterodt-Plünnecke 2004): An der Stelle einer einzigen Intelligenzdimension (´general intelligence´, g-Faktor) ist heute die Konzeption multipler Intelligenzen im Sinne unterschiedlicher Teilkompetenzen (z.B. logisches Schlussfolgern, verbale Intelligenz, kreatives Problemlösen, emotionale Kompetenz, Körperbeherrschung) getreten, für die jeweils andere Erfassungsinstrumente benötigt werden” (Funke 2006).
Gerade in Zeiten von Künstlicher Intelligenz ist es wichtig, auch über die Menschliche Intelligenz zu sprechen. Daraus ergibt sich die Frage, wie passen Künstliche Intelligenz und Menschliche Intelligenz zusammen? Interpretieren wir die von Funke angesprochene Ausdifferenzierung des Intelligenzkonzepts, so führt das meines Erachtens direkt zur Reflexiven Modernisierung und der dort thematisierten Entgrenzung. Möglicherweise hat Gardner´s Theorie der Multiplen Intelligenzen eine bessere Passung zu den aktuellen Entwicklungen. Siehe dazu auch Hybrid Intelligence: Menschliche und Künstliche Intelligenz.
Der Begriff Mindset wird in den aktuellen Diskussionen zu Agilität, Transformation etc. fast inflationär verwendet. In dem Beitrag Mindset: Ein oft verwendeter Begriff etwas genauer betrachtet wird allerdings auch deutlich, dass die möglichen Nebenfolgen des Mindset-Konzepts kaum thematisiert werden. Zusätzlich habe ich in dem Beitrag Growth Mindset, Agilität und Multiple Intelligenzen einige Zusammenhänge zu dem von Caroll S. Dweck propagierten Growth Mindset aufgezeigt. Ich habe mir dazu zunächst einmal das ursprüngliche Paper angesehen, auf das die Idee eines Growth Mindset zurückgeht.
Dweck, C. S.; Leggett, E. L. (1988): A Social-Cognitive Approach to Motivation and Personality. Psychological Review 1988, Vol. 95, No. 2,256-273 | PDF.
Darin verbinden die beiden Autorinnen den Begriff Mindset mit der Vorstellung über Intelligenz. Mit der Veröffentlichung Dweck, C. S. (2008): Mindset: The New Psychology of Success kam dann die Verbreitung ihrer Gedanken so richtig in Schwung. Faszinierend für mich ist, die deutliche Korrelation zum Intelligenz-Begriff.
“Some believe their success is based on innate ability; these are said to have a ´fixed´ theory of intelligence (fixed mindset). Others, who believe their success is based on hard work, learning, training and doggedness are said to have a ´growth´ or an ´incremental´ theory of intelligence (growth mindset)” (Quelle).
Zusammenfassend kann man es wie folgt auf den Punkt bringen:
Fixed Mindset
Growth Mindset
Intelligence is static
Intelligence can be developed
Es stellt sich nun die Frage, was hier unter Intelligenz verstanden wird. Ist es das Intelligenzverständnis, das von einer generellen Intelligenz ausgeht und diese mit einem IQ ausdrückt? Der Bezug zu einem eher generellen Intelligenzverständnis , das sich in einem IQ manifestiert und im Großen und Ganzen nicht veränderbar ist, würde mit den Überlegungen von Caroll S. Dweck wohl eher nicht gut zusammenpassen.
Es gibt allerdings durchaus auch ein Intelligenzverständnis, das von einer veränderbaren, entwickelbaren Intelligenz ausgeht. Protagonisten sind beispielsweise Sternberg und Howard Gardner. Siehe dazu etwas ausführlicher Intelligenztheorie: Anmerkungen zu Sternbergs Triarchischen Theorie und Gardners Multiple Intelligenzen Theorie. Es zeigt sich meines Erachtens durchaus, dass das Konzept eines Growth Mindsets eine gute Passung zu Gardner´s Theorie der Multiplen Intelligenzen hat.
Weiterhin sollte noch beachtet werden, dass sich das Konzept eines Growth Mindsets auf Motivation und Persönlichkeitseigenschaften bezieht, und Persönlichkeitseigenschaften keine Kompetenzen darstellen. Ein Growth Mindset und ein dynamisches Intelligenzkonstrukt wie es die Theorie der Multiplen Intelligenzen darstellt müssen noch in die Welt der Kompetenzen “überführt” werden. Siehe dazu auch Kompetenz und Intelligenz – eine Gegenüberstellung. Multiplen Intelligenzen werden in einem Kontext (berufliche Domäne) situativ aktiviert, um (komplexe) Probleme zu lösen (Complex Problem Solving). Die so entstehenden Multiplen Kompetenzen können auf der individuellen Ebene, der Gruppenebene, der organisationalen Ebene und der Netzwerkebene entwickelt werden.