Gedanken zu Kreativität und Intelligenz

In den letzten mehr 100 Jahren gab es ein Umfeld, das Berechenbarkeit und Vorhersehbarkeit als wesentliche Bestandteile gesellschaftlicher und wirtschaftlicher Entwicklungen betrachtete. Ein Instrument dieser Zeit ist der Intelligenzquotient (IQ) mit seiner (teilweisen) Vorhersehbarkeit von schulischen und/oder beruflichen Entwicklungen.

Das Umfeld hat sich allerdings inzwischen drastisch geändert: Die vielfältigen Vernetzungen von Dingen und Menschen (IoT, KI) haben das bisher relativ stabile Umfeld in ein turbulentes Umfeld gewandelt, in dem Selbstorganisation und die Entwicklung/Bewertung neuer Ideen (Kreativität) wichtig ist. Es stellt sich somit die Frage, welchen Bezug es zwischen Kreativität und Intelligenz (Intelligenzquotient: IQ) gibt.

Creative traits, by definition then, had to be considered to differ from “intelligence” traits in order to give them some potential for predicting achievement above and beyond IQ. Intelligence, of course, had been operationally defined through the IQ measurement long before work in creativity began. If researchers were to establish creativity as a trait, therefore, they faced the practical necessity of demonstrating substantial independence of creativity from IQ. This, in effect, is what the last twenty-five years of creativity measurement research has attempted to do, with only limited success (Wallach, 1971). There were also pragmatic reasons for justifying the construction of creativity tests. Intelligence tests had proved valuable to society in many ways, including the more efficient deployment of manpower resources during both world wars, but the predictive value of IQ measures had been found to be poor in situations requiring production and evaluation of new ideas (Feldman 1980: 89-90).

Der Autor bestreitet somit die Vorhersehbarkeit von Kreativität mit Hilfe des Intelligenzquotienten (IQ). Möglicherweise haben andere Intelligenzmodelle wie die von Sternberg oder von Gardner (Multiple Intelligenzen) eine bessere Passung zu den heutigen Problemlösungssettings. Diese Perspektive würde allerdings die lange Tradition zur Nutzung von IQ-Tests für Schüler und Mitarbeiter – und der damit verbundenen Geschäftsmodelle – infrage stellen. Das hätte durchaus weitreichende Folgen… Es ist daher Verständlich, dass die Vertreter psychometrischer Intelligenzmodelle empfindlich auf solche Perspektiven reagieren.

Hängt der Wissenstransfer von den kognitiven Voraussetzungen ab?

Das Phänomen des Tragen Wissens habe ich in diesem Blog schon mehrfach thematisiert. Dabei ging es jeweils darum, dass Wissen kontextspezifisch konstruiert wird und somit nicht so einfach in einen anderen Kontext zu übertragen ist. Diese Situiertheit von Wissen wird allerdings von Süss angezweifelt.

Das die Relevanz des Situiertheitsansatzes anbetrifft, da sind Zweifel angebracht und nicht zuletzt deshalb, weil die zentrale These m.E. nicht haltbar ist, dass Wissen stets kontextgebunden und ein Transfer also gar nicht möglich ist. Ob ein Transfer zustande kommt (…) hängt stattdessen in erster Linie von den kognitiven Voraussetzungen ab, von Intelligenz und Wissen (Süss 2008).

Der Author argumentiert in seinem Beitrag, dass Intelligenz und Wissen dafür verantwortlich sind, ob – oder in welchem Maße – Wissenstransfer stattfindet. Die Frage, was unter “Intelligenz” verstanden wird, beschreibt der Autor wie folgt:

Ein Ziel der psychometrischen Intelligenzforschung ist die Klärung der Frage, ob Intelligenz eine einheitliche Fähigkeit zu konzeptualisieren ist (Spearman) oder besser durch mehrere, voneinander unabhängigen Einzelfähigkeiten (Thurstone, Guilford) beschrieben werden sollte. Heute zeichnet sich ab, dass beide Positionen richtig sind. Hierarchische Strukturmodelle postulieren ein bündel unterscheidbarer Einzelfähigkeiten, die allerdings zusammenhängen, und damit gleichzeitig die Annahme eines hochgradig generellen Faktors der Allgemeinen Intelligenz (“g”) begründen (Caroll 1993). Generell mein hier, dass diese Fähigkeit zur Lösung von sehr vielen und sehr unterschiedlichen Problemen gebraucht wird. Die empirische Grundlage für diese Annahme ist, dass Intelligenzleistungen, die bei ganz unterschiedlichen Aufgaben erbracht werden, stets schwach, aber positiv korreliert sind (Süss 2008:250-251).

Howard Gardner ist mit seiner Theorie der Multiplen Intelligenzen eher der Auffassung von Thurstone und Guilford, dass es eher voneinander unabhängige Fähigkeiten/Intelligenzen gibt.

Anmerkungen zu einem Modell der Kaufmännischen Kompetenz

Darstellung entnommen aus Winter/Achtenhagen (2010: 19): Berufsfachliche Kompetenz: Messinstrumente und empirische Befunde zur Mehrdimensionalität beruflicher Handlungskompetenz, in: BWP 1/2010, S. 18-21.

Die Kaufmännische Kompetenz wird in der Darstellung als übergeordnete Kompetenzdimension dargestellt, die sich in eine domänenverbundene Kompetenz und in eine domänenspezifische Kompetenz aufteilt. Beide Dimensionen haben wiederum Teilbereiche, die einen bestimmten Zugriff auf Inhaltsbereiche der Domäne ermöglichen.

Mich erinnern die verschiedenen Teilbereiche stark an die verschiedenen Dimensionen der Theorie der Multiplen Intelligenzen nach Howard Gardner. Die in der Urform 8 Intelligenzen ermöglichen einen multiplen, komplexen Problemlösungsprozess in einer bestimmten Domäne. Dabei stellt sich die Frage, wie Intelligenz (Multiple Intelligenzen) und Kompetenz zusammenhängen.

“Auf der Grundlage der Multiplen Intelligenzen Theorie (vgl. Gardner 2002) kann man Kompetenzentwicklung als eine „Ausprägung von Fähigkeiten [zu] beschreiben, deren Entwicklung durch spezifische Intelligenzprofile gegeben ist“ (Rauner et al 2009:34) und bei jedem Menschen situationsabhängig unterschiedlich aktiviert wird, „denn jede [Domäne] hat ihre eigenen Gegenstände, Verfahren und Verknüpfungsmodi“ (Gardner 2003:130)” zitiert in Freund (2011:104).

Siehe dazu ausführlich Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Die Messbarmachung der Intelligenz: Ein Phänomen der Industrialisierung?

Der Intelligenz-Begriff wird in der Kommunikation von Unternehmen mit allen möglichen und unmöglichen Dingen in Bezug gebracht: Intelligente Häuser, intelligente Autos, intelligente XY, bis hin zu einer Künstlichen Intelligenz. Andererseits gibt es bei der eher menschlichen Intelligenz Differenzierungen wie Emotionale Intelligenz, Soziale Intelligenz usw. Es scheint, als ob der Intelligenz-Begriff einer gewissen Beliebigkeit unterworfen wird. Die Geschichte zeigt, dass es ursprünglich um die Messbarkeit von Intelligenz im Rahmen eines Intelligenz-Quotienten ging. Es war Anfang des 20. Jahrhunderts nicht unüblich im Rahmen der Industrialisierung alles messbar zu machen.

Durch Berechnungsverfahren, die von dem deutschen Psychologen William Stern bereits 1911 in den Grundzügen entwickelt und von den in den USA tätigen Psychologen David Wechsler vervollständigt wurden, erfolgte dann eine weitgehende Entkopplung von der sozialen Vergleichsgruppe. Spätestens mit den Arbeiten von Wechsler erhielt der IQ den universellen Anspruch, die Intelligenz eines Menschen umfassend zu beschreiben. Menschen unterschiedlichster Herkunft, verschiedenen Alters sowie unterschiedlichster sozialer Erfahrungen und Qualifikation werden damit vergleichbar. Dieser Anschein von Präzision und Allgemeingültigkeit trägt nach Auffassung von Robert J. Sternberg unter anderem dazu bei, den Stellenwert der Tests immer wieder zu bestätigen. Auch rein ökonomische Argumente spielen eine nicht zu unterschätzende Rolle. Schließlich sollen sich die Intelligenztests speziell bei der Personalauswahl so gut wie kein anderes Auswahlinstrument dafür eignen, erfolgsversprechende von weniger erfolgsversprechenden Bewerbern zu trennen (Abicht 2010:145).

Die Entgrenzung des Intelligenz-Konstrukts führt seit einigen Jahrzehnten zu vielfältigen Diskussionen im wissenschaftlichen, wirtschaftlichen, gesellschaftlichen und privaten Umfeld. Denn: Wer möchte schon als nicht-intelligent, oder gar dumm erscheinen?

Künstliche Intelligenz einfach erklärt

In der Veröffentlichung BMBF (2020): Künstliche Intelligenz (PDF) wird auf relativ einfache weise erläutert, um was es bei dem Begriff “KI” geht. Interessant ist, dass der Begriff schon 1956 von John McCarthy kreiert wurde, und in der Zwischenzeit folgende Bedeutung hat:

Künstliche Intelligenz (KI) ist ein Teilgebiet der Informatik. Sie erforscht Mechanismen, die intelligentes menschliches Verhalten simulieren können. Das beinhaltet zum Beispiel, eigenständig Schlussfolgerungen zu ziehen, angemessen auf Situationen zu reagieren
oder aus Erfahrungen zu lernen (S. 4).

Der Bezug zu einem intelligenten menschlichen Verhalten wirft bei mir die Frage auf, was darunter, und unter menschlicher Intelligenz zu verstehen ist. Ist es der ´berühmt-berüchtigte´Intelligenz-Quotient (IQ), der als Gegenpol zur Künstlichen Intelligenz (KI) gesehen wird, oder sind es auch die verschiedenen Facetten einer Emotionalen Intelligenz (EQ), oder sogar Multiple Intelligenzen (nach Howard Gardner). Der Intelligenz-Begriff war schon in der Vergangenheit wichtig, und scheint in komplexen Settings immer wichtiger zu werden. 

Künstliche Intelligenz treibt Innovationen

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Auch Audi orientiert sich an den Multiplen Intelligenzen von Howard Gardner

audi-mi

Es ist schon sehr interessant zu sehen, wie sich immer mehr Unternehmen an den Multiplen Intelligenzen von Howard Gardner orientieren. Im September 2017 stelle beispielsweise Audi die Studie Aicon vor, bei der sich die Entwickler direkt an den 8 Intelligenzen von Howard Gardner orientiert haben: 8 Intelligences. The Audi Aicon has them all.

The idea of intelligence plays a crucial role: we are talking about technologies that are not only able to apply knowledge but also to acquire it, they are not only able to gather information from the environment but to develop skills and expertise – just like human intelligence.

Auf der Website wird jede der 8 Intelligenzen separat thematisiert. Jede Person wird diese verschiedenen Dimensionen unterschiedlich aufnehmen – und zwar nicht einzeln, sondern immer zusammen und in unterschiedlicher Ausprägung.

Es wird immer deutlicher, dass die Multiplen Intelligenzen eine bessere Passung zu den heutigen komplexen Herausforderungen/Problemstellungen haben. Da die Multiplen Intellogenzen entwickelbar sind, stellen Sie auch ein veränderbares Mindset dar….. Bitte informieren Sie mich, wenn Sie mehr über die Multiplen Intelligenzen von Howard Gardner wissen möchten.

IIT (2017): Wie sieht die Zukunft der Arbeit aus?

ki-neue-arbeit

Der Bericht IIT (2017): Wie sieht die Zukunft der Arbeit aus? (PDF) zur Umfrage “Künstliche Intelligenz und Zukunft der Arbeit” fasst folgende Ergebnisse zusammen (S. 23):

Technisierung des menschlichen Körpers

Die Technisierung des menschlichen Körpers ist nichts Neues: Brillen und Zahnimplantate, Herzschrittmacher und vielfältige Prothesen sind – in bestimmten Formen seit langer Zeit – Realität. Wie weit kann und soll eine solche Technisierung gehen? Gibt es eine Grenze, jenseits derer eine weitere Technisierung nicht mehr akzeptabel wäre – etwa weil dadurch die menschliche Identität grundsätzlich in Frage gestellt würde?

Wertschätzung menschlicher Arbeit

Die Wahrnehmung und Wertschätzung menschlicher Arbeit wird immer stärker durch zwei Abgrenzungen bestimmt: Einerseits die Abgrenzung von technisierten, digitalisierten Prozessen, andererseits die Abgrenzung von Nicht-Arbeit – im Kontext der Debatte um ein bedingungsloses Grundeinkommen. Zu fragen ist, welche Wahrnehmung und Wertschätzung menschlicher Arbeit gewünscht ist, und wie ein solches Bild menschlicher
Arbeit kommuniziert und zur Grundlage konkreter Arbeitsgestaltung gemacht werden kann.

Einsatzszenarien für Künstliche Intelligenz

Künstliche Intelligenz kann vielfältige Rollen und Funktionen im Arbeitsprozess übernehmen. Darunter sind eher positiv besetzte Rollen der Unterstützung, Beratung und Information, und
eher negativ besetzte Rollen wie zum Beispiel die der Kontrolle Überwachung und Bevormundung. Die Frage, die wir uns daher stellen müssen lautet: Wie müssen KI-Systeme und ihre Einsatzszenarien aussehen, damit die künftige Arbeitswelt menschengerecht und gesellschaftlich akzeptabel gestaltet werden kann.

Solche Themen greifen wir auch in den von uns entwickelten Blended Learning Lehrgängen Innovationsmanager (IHK) und Wissensmanager (IHK) auf. Informationen zu den Lehrgängen finden Sie auf unserer Lernplattform.