AI as Engineering: Führt die Perspektive zu unlösbaren Problemen?

AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

Grundsätzlich gibt es verschiedene Perspektiven auf Künstliche Intelligenz (AI: Artificial Intelligence). Die aktuell dominierende Perspektive ist die, AI aus der Perspektive des Ingenieurwesens zu betrachten (Siehe Tabelle). Dabei wird davon ausgegangen, dass Intelligenz in AI-Systemen nachgebildet werden kann. Intelligenz wird dabei oftmals mit dem Intelligenz-Quotienten gleich gesetzt, der in Tests (Intelligenz-Tests) mit Hilfe einer Zahl, dem Intelligenz-Quotienten IQ dargestellt werden kann. Bei dieser Betrachtung auf Intelligenz erstaunt es daher nicht, dass die leistungsfähigsten AI-Systeme locker einen hohen IQ-Wert erreichen. Siehe dazu OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?.

Idea/DescriptionLable
Intelligence can be recreated in artificial systems AI-as-engineeringAI-as-Engineering
Cognition is, or can be understood as, a form of computation AI-as-psychology (a.k.a. computationalism)AI-as-Psychology (a.k.a. computationalism)
Humans can be replaced by artificial systems AI-as-ideologyAI-as-Ideology
The label ‘AI’ helps to sell technologies and gain fundingAI-as-Marketing
Quelle: van Roij et al. (2024): Reclaiming AI as a Theoretical Tool for Cognitive Science

Forscher haben nun in einem Paper dazu Stellung genommen und verschiedene Situationen mit ingenieurwissenschaftlichen Ansätzen überprüft. Das Ergebnis ist ernüchternd: AI-as-Engineering führt zu unlösbaren Problemen. Unlösbar in dem Sinne, dass die menschliche Intelligenz in vielen Facetten ingenieurwissenschaftlich nicht abgebildet werden kann.

“This means that any factual AI systems created in the short-run are at best decoys. When we think these systems capture something deep about ourselves and our thinking, we induce distorted and impoverished images of ourselves and our cognition. In other words, AI in current practice is deteriorating our theoretical understanding of cognition rather than advancing and enhancing it. The situation could be remediated by releasing the grip of the currently dominant view on AI and by returning to the idea of AI as a theoretical tool for cognitive science. In reclaiming this older idea of AI, however, it is important not to repeat conceptual mistakes of the past (and present) that brought us to where we are today” (ebd.).

AI kann natürlich viele Probleme lösen, die vorher so nicht, oder nur zu hohen Kosten lösbar waren. Das heißt allerdings noch lange nicht, dass die vielfältigen kognitiven und psychologischen Dispositionen von Menschen und ihre gesellschaftlichen Netzwerke genau so abgebildet werden können. Es ist verständlich, dass uns die Tech-Industrie das glauben machen will, doch sollten wir die Technologie stärker in den Dienst der Menschen stellen. Wenn wir das nicht machen, gehen die Profite an die großen Tech-Konzerne, wobei die gesellschaftlichen Auswirkungen bei den jeweiligen Ländern hängen bleiben. Eine Gesellschaft ist keine profitorientierte Organisation.

Künstliche Intelligenz: Von AI Agenten und Multi Agenten Systemen

WEF (2024): Navigating the AI Frontier. A Primer on the Evolution and Impact of AI Agents

Aktuell drehen sich die Diskussionen bei der Nutzung von Künstlicher Intelligenz (AI: Artificial Intelligence) hauptsächlich noch um die genutzten LLM: Large Language Models (Trainingsdatenbanken), und darum, ob diese eher closed-source oder open-source sein sollten. Wie in der Abbildung zu sehen ist, zeichnet sich darüber hinaus schon ein weiterer großer Trend ab: AI Agenten.

“Based on the definition of the International Organization for Standardization, an AI agent can be broadly defined as an entity that senses percepts (sound, text, image, pressure etc.) using sensors and responds (using effectors) to its environment. AI agents generally have the autonomy (defined as the ability to operate independently and make decisions without constant human intervention) and authority (defined as the granted permissions and access rights to perform specific actions within defined boundaries) to take actions to achieve a set of specified goals, thereby modifying their environment” (WEF 2024).

Neben den Large Language Models (LLM) kommen somit bei AI Agenten u.a. auch noch Daten von Sensoren und möglicherweise menschliches Feedback hinzu. Daraus ergeben sich ganz neue Möglichkeiten bei komplexen Problemlösunmgsprozessen.

Natürlich können AI Agenten Typen unterschieden werden, beispielsweise in deterministic und non-deterministic etc. Auch kann ein AI Agenten System aus ganz verschiedenen AI Agenten entstehen. Diese wenigen Hinweise zeigen schon auf, welche vielversprechenden neuen Möglichkeiten/Anwendungen sich ergeben können. Natürlich immer unter der Prämisse der Transparenz und Offenheit, um Missbrauch zu verhindern. Es liegt für mich daher auf der Hand. sich mit Open Source AI Agenten zu befassen.

Hybride Intelligenz: Zusammenspiel von Mensch, Maschine und Künstlicher Intelligenz

Wenn es um zu lösende Probleme in einem beruflichen Umfeld geht, so gibt es dabei sehr viele einzelne Aufgaben, die im Zusammenspiel von Menschen, Maschinen und Künstlicher Intelligenz gelöst werden können. Welche “Konfiguration” dabei angemessen erscheint, ist Abhängig vom Kontext, dem Task (Aufgabe) und den vorhandenen Problemlösungspotentialen. An dieser Stelle kommt der Begriff Hybride Intelligenz ins Spiel.

“Dellermann, Ebel, Söllner und Leimeister (2019: 638) definieren hybride Intelligenz als die Fähigkeit, komplexe Ziele durch die Kombination menschlicher und künstlicher Intelligenz zu erreichen, kontinuierlich voneinander zu lernen und dabei Ergebnisse zu produzieren, die über das hinaus gehen, was KI oder Mensch allein hätten erreichen können. Nicht immer lässt sich hierbei trennscharf zwischen Automation und Augmentation unterscheiden (Raisch & Krakowski, 2021). Der Grad der Automation bzw. Augmentation hängt immer individuell von der jeweiligen zu lösenden Aufgabe ab” (Piller et al. 2024, in Koller et al. 2024: Die Zukunft der Grenzenlosen Unternehmung).

Was allerdings unter “Menschlicher Intelligenz” verstanden wird, ist dabei nicht weiter erläutert. Ich gehe daher davon aus, dass von dem bekannten Intelligenzquotienten (IQ) ausgegangen wird, der sich in einer Zahl manifestiert. Dass das im Zusammenhang mit den Entwicklungen bei der Künstlichen Intelligenz kritisch sein kann, wird in dem Blogbeitrag OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? deutlich.

Wenn wir weiterhin beachten, dass auch der Intelligenz-Begriff erweitert werden sollte, können wir möglicherweise auch von einer Multiplen Künstlichen Intelligenz sprechen. Siehe dazu auch Multiple Artificial Intelligences (MAI) statt Artificial General Intelligence (AGI)?

Multiple Artificial Intelligences (MAI) statt Artificial General Intelligence (AGI)?

Adobe: AI (Artificial intelligence) AI management and support technology in the Business plan marketing success customer. AI management concept.

In den Diskussionen um Künstliche Intelligenz (KI) – oder englischsprachig Artificial Intelligence (AI) – führt die Systembetrachtung zu einer Art Generellen Künstlichen Intelligenz – General Artificial Intelligence (GAI) oder auch Artificial General Intelligence (AGI). Darunter ist folgendes zu verstehen:

“A system believed to perform (solve) domain-general cognitive tasks (problems; what some may also call AGI). … [it seems to] leave little room for AI as a theoretical tool for cognitive science. The reason is that BigTech currently dominates the narrative, with a focus on technological progress and impressive machine learning applications” (van Rooij et al. 2024).

Es geht also bei AGI um eine von Technologie dominierte generelle kognitive Problemlöse-Fähigkeiten eines Systems. Diese Sichtweise liegt in der Tradition von Simon, Shaw und Newell. die 1957 die Software “General problem Solver” entwickelten (Quelle: Wikipedia).

Das erinnert insgesamt stark an die Diskussionen, bei denen es um Menschliche Intelligenz geht. Auch hier steht immer wieder die Frage im Raum, ob es sich bei der Menschlichen Intelligenz um eine Generelle Intelligenz handelt, die mit einem Intelligenz-Quotienten (IQ) bestimmt werden kann, oder ob es um Multiple Intelligenzen im Sinne von Howard Gardner oder auch Sternberg etc. geht. Dabei geht Howard Gardner bei Intelligenz bewusst von einem “biopsychologisches Potenzial ” aus, was Künstliche Intelligenz wiederum aus seiner Sicht ein Kategorienfehler zu sein scheint.

Wenn wir also den Trend von einer Generellen Menschlichen Intelligenz zu eher Multiplen Intelligenzen unterstellen, sollten wir dann nicht statt Artificial General Intelligence eher von Multiple Artificial Intelligence (MAI) ausgehen?

Wenn Sie diesen Begriff in Google eingeben, werden Sie einige Treffer erhalten. Dabei geht es allerdings hauptsächlich um eine Art Vielfalt der verschiedenen AI-Anwendungen. Ich meine mit dem Begriff Multiple Artificial Intelligences ein hybrides Intelligenz-Konstrukt, das die Menschliche und Künstliche Intelligenz kontextbezogen für komplexe Problemlösungen in einem bestimmten kulturellen Umfeld beschreiben kann..

Wisdom of Crowds – Schwarm Intelligenz – Kollektive Intelligenz

Quelle: Feldhusen, B. (2021)

Der Begriff “Künstliche Intelligenz” hat uns wieder darauf gestoßen, dass es Sinn macht, sich auch mit der Menschlichen Intelligenz zu befassen. Entscheidend dabei ist, was unter der Menschlichen Intelligenz verstanden wird, und was unter einer gemeinsamen, eher Kollektiven Intelligenz verstanden wird.

Wie die Leser unseres Blog wissen, tendieren wir dazu, wie Howard Gardner von Multiplen Intelligenzen zu sprechen, was einer Ergänzung/Entgrenzung des klassischen Intelligenz-Quotienten entsprechen würde. Multiple Intelligenzen sind nach Howard Gardner “biopsychologisches Potential”, sodass der Begriff “Künstliche Intelligenz” eher ein Kategorienfehler ist. Siehe dazu auch OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler? Intelligenz kann dabei auf der individuellen Ebene, auf der Gruppenebene, auf der Ebene der Organisation, oder auch in Netzwerken thematisiert werden.

In diesem Beitrag soll es hauptsächlich um eine gemeinschaftliche, Kollektive Intelligenz gehen, die nicht einfach eine Menge von Individuen bedeutet, sondern erst unter bestimmten Bedingungen entsteht. Dazu gab es in der Vergangenheit weitere Begriffe wie Wisdom of Crowds, Schwarmintelligenz und eben Kollektive Intelligenz, die sich in ihrer Interaktionsqualität von Kumulation/Aggregation bis hin zu Interaktion/Kreation unterscheiden (Abbildung). Diese Unterschiede beschreibt Feldhusen (2021) wie folgt:

“Vielmehr entsteht Kollektive Intelligenz durch die Qualität menschlicher Begegnung und ihres Design- bzw. Organisationsprozesses. Entscheidend ist, wie wir uns und anderen zuhören, Unterschiede wahrnehmen und verarbeiten, aufeinander eingehen, uns auf neue Perspektiven einlassen, miteinander Lösungen verhandeln, uns und dem Prozess der Interaktion Aufmerksamkeit schenken. Wie eingangs zitiert, sieht Gary Hamel die Führungskräfte der Zukunft als Architekten sozialer Systeme. Dies bedeutet für die meisten Mitarbeiter/innen und Führungskräfte einen tiefgreifenden Reife- und Entwicklungsprozess hin zu einer Haltung, die dem Gegenüber mindestens die gleiche Bedeutung beimisst wie dem Selbst” (Feldhusen, B. (2021): Kollektive Intelligenz und Psychologische Sicherheit: Haben wir Intelligenz im Gefühl?. Organisationsberatung Supervision Coach 28, 355–371 (2021). https://doi.org/10.1007/s11613-021-00719-2).

Siehe dazu auch Schwarmintelligenz: Die Weisheit der vielen und das Wissen der Eliten.

Spirituelle Kompetenz – ohne esoterisch zu werden

mage by StockSnap from Pixabay

Heute geht es oft um die täglich zu bewältigenden Aufgaben, die immer komplexer werden. Darüber hinaus geht es allerdings auch um die “großen Fragen”, wie die zur menschlichen Entwicklung, zu ethischen Herausforderungen usw. Diese Themen sind oft “weit weg” von der täglichen Praxis und auch schwer fassbar,. Dennoch ist es wichtig, sich mit den “großen Fragen” zu befassen, und ein für sich angemessenes Handeln daraus abzuleiten. Diese Form der Kompetenz ist Bestandteil einer Selbstkompetenz, die als Spirituelle Kompetenz bezeichnet werden kann.

Spirituelle Kompetenz, diese im Kontext der realistischen Wenden beinahe in Vergessenheit geratene und in die Esoterik abgedrängte Dimension der Selbstkompetenz, ist der eigentliche Kern jeglicher Persönlichkeitsbildung. Die „innere Entwicklung“ der Lernenden transformiert die Wertvorstellungen und ethischen Maßstäbe sowie Möglichkeiten ihres Handelns. In Ihnen wird sichtbar, welche besondere Bedeutung die Lernenden mit ihrem Leben ausdrücken wollen. Spirituelle Kompetenz ist die Fähigkeit, sich selbst und die Welt im Bewusstsein der „großen Fragen“ zu deuten und entsprechend zu handeln (vgl. Astin/Astin/Lindholm 2011).” (Arnold 2017).

Interessant ist darüber hinaus, dass es in der Multiple Intelligenzen Theorie von Howard Gardner auch die Spirituelle Intelligenz gibt. In dem Zusammenhang ist es wichtig, Ähnlichkeiten und Unterschiede der verschiedenen Begriffe herauszustellen. Siehe dazu auch

Kompetenz und Intelligenz – eine Gegenüberstellung

Anmerkungen zu Growth Mindset, Intelligenz und Kompetenz

Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen?

Business Agility und Organizational Agility

Top view of multiracial young creative people in modern office. Group of young business people are working together with laptop, tablet, smart phone, notebook. Successful hipster team in coworking. Freelancers.

Es ist in der Zwischenzeit unstrittig, dass sich Organisationen an das veränderte Umfeld dynamisch anpassen müssen. Wenn es um Strukturen, Prozesse und Technologien geht, wird das oft als Business Agility bezeichnet.

Eine Organizational Agility oder Systemic Agility geht darüber hinaus. Hier steht “(…) ein menschenzentrierter Ansatz im Mittelpunkt, der die Selbstorganisation der Mitarbeitenden und Teams fördert” (Tuczek et al. 2024, in projektmanagementaktuell 04/2024).

“Das Wachstum der Organisation basiert auf dem Wachstum der Individuen in der Organisation und der Entwicklung einer „Kollektiven Intelligenz“. Zukünftig wird auch die Künstliche Intelligenz Teil dieser Collective Intelligence werden und neue Potenziale eröffnen” (Tuczek et al. 2024, in projektmanagementaktuell 04/2024).

Interessant ist hier der Hinweis auf die Selbstorganisation der Mitarbeitenden und Teams, die aus meiner Sicht noch auf die Ebenen Organisation und Netzwerk erweitert werden müsste. Weiterhin wird der Begriff der “Kollektive Intelligenz” in diesem Zusammenhang verwendet, allerdings ohne zu erwähnen, was darunter gerade im Zusammenspiel zwischen einer Menschlichen Intelligenz und einer Künstlicher Intelligenz gemeint ist.

In meiner Veröffentlichung Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk bin ich solchen Fragen auf Basis der Multiple Intelligenzen Theorie nachgegangen.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?

Lott, M. (2024): Massive breakthrough in AI intelligence: OpenAI passes IQ 120

Wenn wir von Intelligenz sprechen geht es oft um den Intelligenz-Quotienten (IQ) bei Menschen, dessen Ergebnisse in einer Normalverteilung dargestellt werden. Der Wert für den IQ kann dabei aus unterschiedlichen Testverfahren bestimmt werden. Der Mensa Norway IQ-Test ist dafür ein Beispiel.

Maxim Lott hat die dort gestellten Fragen von verschiedenen KI-Anwendungen beantworten lassen. Das Ergebnis ist in der Abbildung zusehen. Das neu vorgestellte Modell “o1” von OpenAI schneidet hier mit 120 Punkten am besten ab. Was bedeutet das?

Da in den IQ-Tests oftmals eher logisch-mathematische Attribute abgefragt werden, ist das Ergebnis wenig überraschend. Es stellt sich aus meiner Sicht eher die Frage, ob der Intelligenz-Quotient (IQ) mit seinen in den letzten über 100 Jahren entwickelten Messverfahren geeignet ist, menschliche Intelligenz abzubilden.

Wird das Verständnis von Intelligenz erweitert (entgrenzt), so kommen Dimensionen wie Emotionale Intelligenz, Soziale Intelligenz usw. hinzu, die von einer KI-App nicht, oder nur bedingt abgebildet werden können.

Aus meiner Sicht bedeutet das Ergebnis (Siehe Abbildung) also nicht, dass Künstliche Intelligenz genau so intelligent – oder intelligenter – als ein Mensch ist, sondern dass das zugrundeliegende Intelligenz-Konstrukt (IQ) möglicherweise nicht passt. In der von Howard Gardner vorgeschlagenen Theorie der Multiplen Intelligenzen ist Intelligenz beispielsweise wie folgt beschrieben:

„Ich verstehe eine Intelligenz als biopsychologisches Potenzial zur Verarbeitung von Informationen, das in einem kulturellen Umfeld aktiviert werden kann, um Probleme zu lösen oder geistige oder materielle Güter zu schaffen, die in einer Kultur hohe Wertschätzung genießen“ (Gardner 2002:46-47).

Der Hinweis auf ein “biopsychologisches Potenzial” deutet schon an, dass es für Howard Gardner bei dem Begriff “Intelligenz” für menschliche Intelligenz verwendet. Den Begriff “Künstliche Intelligenz” sieht Howard Gardner daher als Kategorienfehler. Siehe dazu auch Multiple Intelligenzen nach Howard Gardner: Ist eine Intelligenz der anderen überlegen?

Vermindert der Einsatz Künstlicher Intelligenz menschliche Fähigkeiten?

Wenn wir ein Navigationssystem nutzen hilft uns das, schnell und bequem unser Ziel zu erreichen. Andererseits vermindert sich dadurch auch die menschliche Fähigkeit, sich zu orientieren. Die Nutzung eines Autos hilft uns, große Strecken zurückzulegen, doch vermindert es auch unsere körperlichen Fähigkeiten. Die Nutzung eines Computers erleichtert uns die Bearbeitung von Zahlenkolonnen, doch reduziert es auch unsere Rechen-Fähigkeiten. Die Nutzung von Suchmaschinen wie Google hat es uns erleichtert, Daten und Informationen schnell zu finden. Manche Fähigkeiten der Recherche und des Prüfens von Daten und Informationen bleiben hier manchmal wegen den schnellen Zyklen der Veränderungen auf der Strecke.

Warum sollten diese Effekte also bei der Nutzung von Künstlicher Intelligenz anders sein?

“Eine grundlegende Erkenntnis besagt, dass jedes technische Hilfsmittel die Fähigkeiten der Kombination «Mensch-Tool» zwar erhöht, jene des Menschen alleine aber potenziell vermindert (every augmentation is also an amputation, frei nach Marshall McLuhan)” (Digital Society Initiative 2023)

Im Kontext der universitären Bildung haben Forscher ermittelt, welche menschlichen Fähigkeiten in Zukunft in einem von KI dominierten Umfeld erhalten und gestärkt werden sollten (vgl. Digital Society Initiative 2023):

Grundlegende technische Fähigkeiten in Bezug auf KI-Technologien.

Sozialisationsfähigkeiten: Soziales Lernen, Einfühlungsvermögen, Resilienz und effektives
Teamwork gefördert werden. Dies bedingt auch ein Verständnis und eine Reflexion über ethische Werte und wissenschaftlichen Ethos.

Kritisches Denken: Kritische Diskurs, das Denken in Modellen und Abstraktionen sowie die Fähigkeit zur multiperspektivischen Kognition und Analyse.

Handeln unter Unsicherheit: Um mit der Geschwindigkeit des technischen Fortschritts (und auch den bekannten globalen Herausforderungen wie z.B. dem Klimawandel) umgehen zu können, sind Fähigkeiten zu fördern, welche das Handeln unter Unsicherheit erleichtern. Unter anderem zu nennen ist hier eine Schulung der Intuition und abstraktes Problemlösen.

Anmerken muss ich an dieser Stelle, dass persönliche Fähigkeiten nicht mit Persönlichkeitseigenschaften gleich gesetzt werden sollten. Siehe dazu auch Über den Umgang mit Ungewissheit. Es geht hier darum, dass gerade der Mensch als soziales und emotionales Wesen komplexe Problemlösungssituationen besser bewältigen kann, als es Technologie vermag. Wie ein Idealszenario der Arbeitsteilung zwischen menschlicher und künstlicher Intelligenz aussehen kann, lesen Sie in diesem Blogbeitrag.

Projektmanagement: KI-Unterstützung der ICB 4.0 Kompetenzen

Künstliche Intelligenz (KI) oder auch Artificial Intelligence (AI) ist mit seinen unglaublichen Möglichkeiten in aller Munde – natürlich auch im Projektmanagement. Ein guter Bezugspunkt für eine KI-Unterstützung im Projektmanagement kann die ICB 4.0 (Individual Competence Baseline 4.0) sein, die von der International Project Management Association (IPMA) zur Professionalisierung des Projekt-, Programm- und Portfoliomanagements veröffentlicht wurde. In der ICB 4.0 sind insgesamt 28 Kompetenzen definiert, die in drei Kategorien gegliedert sind. Jeder Kategorie kann durch KI unterstützt werden.

KategorieThemenKI-Unterstützung
Kontextuelle KompetenzenStrategie, Kultur, Werte etc.Einhaltung der Governance-Richtlinien
Persönliche und soziale KompetenzenPersönliche Integrität, Verlässlichkeit, Teamarbeit etc.Kommunikations-
verhalten einzelner Teammitglieder
Technische KompetenzenProjektplanung und Steuerung, Risikomanagement etc.Virtuelle KI-Assistenten
In Anlehnung an Schelter, N. (2024)

Grundsätzlich halte ich diese strukturierte KI-Unterstützung auf Basis der ICB 4.0 – Kompetenzen für sinnvoll. Dennoch möchte ich folgendes anmerken:

(1) Es handelt sich hier möglicherweise um ein mismatch von Begrifflichkeiten. Einerseits sprechen wir von Kompetenzen, andererseits von Künstlicher Intelligenz. Hier gibt es durchaus Unterschiede, die zu beachten sind. Siehe dazu beispielsweise Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen?

(2) Als Leser unseres Blogs wissen Sie, dass ich eher das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk bevorzuge.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.