Grundsätzlich gibt es verschiedene Perspektiven auf Künstliche Intelligenz (AI: Artificial Intelligence). Die aktuell dominierende Perspektive ist die, AI aus der Perspektive des Ingenieurwesens zu betrachten (Siehe Tabelle). Dabei wird davon ausgegangen, dass Intelligenz in AI-Systemen nachgebildet werden kann. Intelligenz wird dabei oftmals mit dem Intelligenz-Quotienten gleich gesetzt, der in Tests (Intelligenz-Tests) mit Hilfe einer Zahl, dem Intelligenz-Quotienten IQ dargestellt werden kann. Bei dieser Betrachtung auf Intelligenz erstaunt es daher nicht, dass die leistungsfähigsten AI-Systeme locker einen hohen IQ-Wert erreichen. Siehe dazu OpenAI Model “o1” hat einen IQ von 120 – ein Kategorienfehler?.
Idea/Description | Lable |
Intelligence can be recreated in artificial systems AI-as-engineering | AI-as-Engineering |
Cognition is, or can be understood as, a form of computation AI-as-psychology (a.k.a. computationalism) | AI-as-Psychology (a.k.a. computationalism) |
Humans can be replaced by artificial systems AI-as-ideology | AI-as-Ideology |
The label ‘AI’ helps to sell technologies and gain funding | AI-as-Marketing |
Forscher haben nun in einem Paper dazu Stellung genommen und verschiedene Situationen mit ingenieurwissenschaftlichen Ansätzen überprüft. Das Ergebnis ist ernüchternd: AI-as-Engineering führt zu unlösbaren Problemen. Unlösbar in dem Sinne, dass die menschliche Intelligenz in vielen Facetten ingenieurwissenschaftlich nicht abgebildet werden kann.
“This means that any factual AI systems created in the short-run are at best decoys. When we think these systems capture something deep about ourselves and our thinking, we induce distorted and impoverished images of ourselves and our cognition. In other words, AI in current practice is deteriorating our theoretical understanding of cognition rather than advancing and enhancing it. The situation could be remediated by releasing the grip of the currently dominant view on AI and by returning to the idea of AI as a theoretical tool for cognitive science. In reclaiming this older idea of AI, however, it is important not to repeat conceptual mistakes of the past (and present) that brought us to where we are today” (ebd.).
AI kann natürlich viele Probleme lösen, die vorher so nicht, oder nur zu hohen Kosten lösbar waren. Das heißt allerdings noch lange nicht, dass die vielfältigen kognitiven und psychologischen Dispositionen von Menschen und ihre gesellschaftlichen Netzwerke genau so abgebildet werden können. Es ist verständlich, dass uns die Tech-Industrie das glauben machen will, doch sollten wir die Technologie stärker in den Dienst der Menschen stellen. Wenn wir das nicht machen, gehen die Profite an die großen Tech-Konzerne, wobei die gesellschaftlichen Auswirkungen bei den jeweiligen Ländern hängen bleiben. Eine Gesellschaft ist keine profitorientierte Organisation.