The Economist (2016): ARTIFICIAL INTELLIGENCE IN THE REAL WORLD

econnomist-2016-artificial-intelligence

In dem Paper The Economist (2016): ARTIFICIAL INTELLIGENCE IN THE REAL WORLD: The business case takes shape (PDF) wird zunächst einmal herausgestellt, dass Artificial Intelligence (Künstliche Intelligenz) nichts ist, das irgendwann zum Einsatz kommt. Artificial Intelligence (AI) wird schon in vielen Bereichen erfolgreich genutzt. Doch zunächst ist es sinnvoll zu deg´finieren, was unter AI, Deep Learning und Machine Learning zu verstehen ist (Seite 3):

The term artificial intelligence (AI) refers to a set of computer science techniques that enable systems to perform tasks normally requiring human intelligence, such as visual perception, speech recognition, decisionmaking and language translation. Machine learning and deep learning are branches of AI which, based on algorithms and powerful data analysis, enable computers to learn and adapt independently. For ease of reference we will use “artificial intelligence”, or AI, throughout this report to refer to machine learning, deep learning and other related techniques and technologies.

Zu folgende Ergebnissen ist die Analyse gekommen:

  • The pace of adoption is quickening.
  • North America and the health sector lead the way.
  • Competition—or the anticipation of it—is spurring companies on.
  • Better user experience is the key prize for many.
  • Better decisions should also result.
  • Efficiency and flexibility gains beckon for retailers and manufacturers.
  • Cost, data quality and cultural resistance hold companies back.
  • Building the AI business case is anything but straightforward.

Siehe dazu auch meine Veröffentlichungen:

Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Freund, R. (2016): Wie verändert Cognitive Computing die HR-Landschaft?. In: HR Performance 2/2016, S. 16-19 | Download

Künstliche Intelligenz: In Deutschland entwickelt, in den USA und Asien genutzt

cognitive-computing

Der Artikel von Jürgen Schmidhuber Künstliche Intelligenz: Eine Maschine klüger als der Mensch (ZeitOnline vom 02.06.2016) zeigt sehr gut auf, dass in den letzten Jahrzehnten in der Forschung in Deutschland die Basis für die Anwendung der Künstlichen Intelligenz gelegt wurde (Deep Learning):

Seit den 1990er Jahren haben also europäische Steuerzahler die Forschung finanziert, die jetzt einigen der wertvollsten amerikanischen und asiatischen Firmen dient. Auch deutsche Unternehmen interessieren sich nun für unsere Methoden.

Dieser kurze Ansatz zeigt schon das Dilemma: Die Grundlagenforschung, immerhin mit Steuergelder finanziert, bietet in vielen Bereichen den Nährboden für alle möglichen Anwendungen. Das ist nicht nur heute bei Deep Learning so, sondern war in der Vergangenheit auch bei anderen technologischen Themen so. Beispielsweise wurde das MP3-Format bei einer Fraunhofer-Tochter entwickelt, doch die Anwendungen kommen hauptsächlich von internationalen Unternehmen. Es reicht nicht aus, Ideen zu haben, die nicht umgesetzt werden. Auch reicht es nicht aus, Stolz auf die deutschen Erfindungen zu sein, die ihren Schwerpunkt in alten Technologiebereichen (Elektronik, Automobilbau, Maschinenbau usw.) haben. Es gibt immer noch keinen deutschen/europäischen Konzern, der es mit Apple, Google, Facebook, Ebay, Amazon usw. aufnehmen kann. Das sind die Bereiche, die zukunftsfähig sind. Es reicht nicht aus, immer nur in den Rückspiegel zu schauen. Die Zukunft sieht man nur, wenn man auch durch die Frontscheibe des globalen Wettbewerbs schaut. Augen auf! Dazu passt auch der von mir veröffentlichte Artikel Freund, R. (2016): Freund, R. (2016): Wie verändert Cognitive Computing die HR-Landschaft?. In: HR Performance 2/2016, S. 16-19  (PDF). Weiterhin thematisiere ich diese Zusammenhänge auch in dem von uns entwickelten Blended Learning Lehrgang Innovationsmanager (IHK). Informationen finden Sie dazu auf unserer Lernplattform.

Machine Learning as a Service: Warum eigentlich nicht?

mlaasAn Software as a Service (SaaS), Cloud as a Service usw. haben wir uns schon gewöhnt. Jetzt werden wir uns mit Machine Learning as a Service (MLaaS) befassen müssen. Die beiden Beiträge Machine Learning as a Service – Part 1 und Machine Learning as a Service – Part 2 zeigen anhand von drei Angeboten auf, welche Serviceleistungen schon möglich sind. Dabei ist der aus meiner Sicht führende Anbieter – Watson von IBM – gar nicht dabei. IBM hat im letzten Jahr seine API für Machine Learning für Nutzer geöffnet und schon nach kurzer Zeit haben über 70.000 Entwickler diese Chance für neue Produkte und Dienstleistungen genutzt. Es zeigt sich deutlich, dass Cognitive Computing mit dem hinterlegten Deep Learning (Machine Learning) ein Treiber für Innovationen sein kann. Auf diese Zusammenhänge bin ich auch in der Special Keynote auf der Weltkonferenz MCPC 2015 in Montréal eingegangen. Darüber hinaus gebe ich diese Hinweise auch gerne in dem von uns entwickelten Blended Learning Lehrgang Innovationsmanager (IHK) weiter. Informationen dazu finden Sie auf unserer Lernplattform.

TensorFlow: Google´s Open Source Software Library for Maschine Learning

tensorflowTensorFlow ist Google´s Open Source Software Library for Maschine Learning.  Seit 09.11.2015 stehen die Möglichkeiten des Deep Learning allen zur Verfügung, die daraus Anwendungen oder auch innovative Geschäftsmodelle entwickeln wollen. Damit steht TensorFlow in direkter Konkurrenz zu IMB´s Warson Projekt, dass seine API auch freigegeben hat. Mal sehen, wo das schnellste und innovativste Ökosystem für entsprechende Anwendungen entsteht. Ich vermute eher bei Google – bin mir aber nicht sicher. Da ich mich in meiner Special Keynote auf der Weltkonferenz MCPC 2015 in Monteeal mit Cognitive Computing befasst habe, bin ich an dieser Entwicklung stark interessiert. Siehe dazu auch Freund, R. (2015): Cognitive Computing and Managing Complexity in Open innovation Model, MCPC 2015 proceedings. Natürlich gehen wir auf diese ntwicklungen auch in dem von uns entwickelten Blended Learning Lehrgang Innovationsmanager (IHK) ein. Informationen finden Sie dazu auf unserer Lernplattform.