Learning Analytics: Auch beim Lernen geht es um den Umgang mit Daten – und damit auch um Künstliche Intelligenz (KI)

Wenn es um viele Daten geht, kommt schnell Künstliche Intelligenz (KI) ins Spiel. Das ist nicht nur bei Produktionsprozessen, Marketingaktivitäten etc. so, sondern auch beim Lernen, und somit auch bei Organisationen. Am Beispiel der Organisation Hochschule, den Leherenden und den Lehrnenden kann beispielhaft gezeigt werden, wie Künstliche Intelligenz (KI) im Rahmen von Learning Analytics auf verschiedenen Ebenen genutzt werden kann.

“Am Beispiel der Learning Analytics, also der Auswertung von erhobenen Daten rund um Lernvorgänge zum Zwecke des Verständnisses, der Optimierung und Vorhersage des Lernverhaltens und des Lernerfolgs, lässt sich aufzeigen, wie alle hochschuldidaktischen Ebenen und die Rollen der Lernenden, Lehrenden und der Organisation von KI-Innovationen erreichbar sind, siehe Abbildung. Die individuelle Ebene des Lernens bis hin zur Entwicklung und Neugestaltung von Studiengängen ist adressierbar” (Schmohl 2023).

LerndendeLehrendeOrganisation
Mikroebene
(Lernsequenz)
Adaptive Lernsoftware zur Klausur-vorbereitungInformation zu Schwierigkeiten des Kurses über eine AufgabeDynamische Bereitstellung von Ressourcen, z.B. Servern
Mesoebene
(Semester, Kurs)
Monitoring des eigenen Lernerfolgs über ein SemesterAnalyse von Gruppen-lernprozessen in großen OnlinekursenUnterstützung bei der zeitlichen Planung des Lehrangebots
Makroebene
(Langfristig)
Langfristige ePortfolios, Passung zu JobprofilenWeiterentwicklung als Lehrkraft, Erkenntnisse zu ErfolgsfaktorenMonitoring und Revision von Studiengängen
Learning Analytics aus de Witt et al. (2020:14), zitiert in Herzberg (2023), in: Schmohl et al (Hrsg.) 2023

Es ist vielen Bildungsorganisation nocht nicht bewusst, dass die Daten von Lernenden, Projektteams, der Organisation und der außerorganisationalen Netzwerke für die Zukunft des Lebenslangen Lernens von großer Bedeutung sind. Mit innovativen KI-Anwendungen können diese Daten zur Kompetenzentwicklung auf allen Ebenen beitragen. Voraussetzung sollte aus meiner Sicht eine Ethische KI sein, die Transparent ist und bei der die generierten daten dem Lernenden gehören. Siehe dazu auch Nextcloud Hub 4 mit “ethical AI”-Integration.

In den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK) gehen wir auf diese Entwicklungen ein. Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Der KI-basierte Arbeitsplatz – eine erste Einordnung

Die Entwicklung bei KI-Anwendungen ist rasant. Alleine die weltweite Nutzung von ChatGPT von OpenAI hat alle Erwartungen übertroffen. Die Abkürzung ChatGPT lautet dabei etwas ausführlicher “Chatbot Generative Pre-trained Transformer”. Die hinterlegten Daten sind also vorher “trainiert” worden. Beim Start von ChatGPT standen nur Daten bis 2021 zur Verfügung. Dennoch waren die ersten Ergebnisse verblüffend. Siehe dazu ChatGPT – Was ist das? (MDR vom 11.06.2023). In allen gesellschaftlichen Bereichen werden in der Zwischenzeit die Möglichkeiten von ChatGPT genutzt, incl. der mehr als 128 Plugins (Stand: Mai 2023). Dabei ist das Spektrum von OpenAI nicht alleine auf Text beschränkt, sondern enthält mit Dall-E auch Möglichkeiten, KI auf Fotos anzuwenden.

In 2023 hat sich Microsoft mit Milliarden US$ bei OpenAI engagiert. Alle aktuellen und zukünftigen KI-Anwendungen von OpenAI will Microsoft in seine Produkte, wie z.B. in Office, oder auch in die Suchmaschine Bing integrieren – Beispiel. Die Erweiterung auf eine Suchmaschine ermöglicht es der KI-Anwendung, auch auf Daten aus dem Internet zuzugreifen. Dabei ist nicht immer klar zu erkennen, welcher (beispielsweise) Text von welcher Quelle ist. Es wundert daher nicht, dass sich dagegen immer mehr Autoren wehren. Eine ähnliche Entwicklung gibt es bei Fotos. Der Beitrag Künstliche Intelligenz (KI) im Urheberrecht: Welche Rechte bestehen? bietet dazu gute erste Informationen. Wenn Organisationen nun KI-Anwendungen am Arbeitsplatz nutzen wollen, stehen sie vor folgenden Fragen (Auswahl):

  • Welche Anwendungen sind für welchen Arbeitsplatz sinnvoll (Mehrwert)?
  • Wie kann KI in die Arbeitsprozesse integriert werden?
  • Was ist mit dem Urheberrecht?
  • Was passiert mit den generierten Daten?
  • Wo werden die Daten gespeichert, bzw. ausgewertet und weiter genutzt?
  • …..

Microsoft mit OpenAI verweist zwar auf seinen Product Safety Standard, und auch Google Bard oder Facebook weisen auf ähnliches hin, doch haben alle das Problem, dass der Umgang mit Daten meines Erachtens immer noch einer Black Box entspricht: Mit den Anfragen (Prompts) geben Nutzer z.B. Text ein, und erhalten anschließend eine Antwort. Was dazwischen passiert ist nicht transparent. Weiterhin ist der Datenschutz bei den Anbietern oftmals nicht so, wie wir es uns in Europa vorstellen – auch wenn, wie im Falle von Microsoft, nachgebessert wurde. Es wundert daher nicht, dass die EU versucht, einen Rahmen abzustecken (Tagesschau vom 14.06.2023), um die Themen um KI-Anwendungen zu regeln. Diese Regelungen sollten allerdings weiterhin Spielraum für Innovationen bieten. Siehe dazu auch KI-Gesetz der EU.

Wir testen aktuell verschiedene KI-Anwendungen für die von uns entwickelten Blended Learning Lehrgänge. Siehe dazu beispielsweise Digitalisierung – inkl. KI – im Projektmanagement.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Von New Work zu New Digital Work?

Image by Gerd Altmann from Pixabay

Die Digitalisierung von Arbeit begleitet uns schon seit vielen Jahrzehnten. Die dabei immer intensivere Vernetzung von technischen Systemen und Menschen führt zu einer erhöhten Komplexität, die nur mit mehr Selbstorganisation am Arbeotsplatz bewältigt werden kann. Dieser Aspekt ist ein (!) wichtiger Baustein der Neuen Arbeit – New Work. Siehe dazu ausführlicher Beispiele für neue Arbeitskonzepte aus dem New Work Barometer – und kritische Anmerkungen dazu.

In der Zwischenzeit gibt es allerdings Entwicklungen, die eine weitere Qualität in der Arbeit mit neuen Technologien darstellt. Diese New Digital Work zeichnet sich durch folgende Punkte aus, die in Hartmann, E. A.; Shajek, A. (2023:1-2): New Digital Work and Digital Sovereignty at the Workplace – An Introduction, in: Shajek, A.; Hartmann, E.A. (Eds) (2023): New Digital Work, S. 1-15 wie folgt beschrieben sind:

Immersion, the experience of direct interaction with a digitally mediated or (in parts) digitally created world, and the corresponding tendency towards ‘invisible’, ‘vanishing’ human-computer interfaces (Dede 2009; Fishkin et al. 1999; Mayer et al. 2023, this volume).

The use of Artificial Intelligence (AI) at the workplace, with its potentials to substitute as well as enhance human intelligence, and its effects on a growing lack of transparency of the inner structure and workings of the technology itself (High-Level Expert Group on AI [AI HLEG], 2020; Mueller et al. 2019; Pentenrieder et al. 2023, this volume; Staneva and Elliott 2023, this volume; Zhou et al. 2021).

Digital labor platforms transforming access to labor markets, contract and working
conditions, and workers’ rights and opportunities to associate and organize themselves (Harmon and Silberman 2018; ILO – International Labour Organization, 2018, 2021; Yan et al. 2023, this volume).

Die von mir eingefügten Links sollen die jeweiligen Dimensionen weiter erläutern. Spannend ist hier auch die in der genannten Veröffentlichung angesprochene Digitale Souveränität am Arbeitsplatz (Digital Sovereignty at the Workplace).

Projektarbeit ist dabei ein wichtiges Element dieser Entwicklungen, denn Projekte sind Träger des Wandels. Darüber hinaus wird Projektarbeit selbst auch von den genannten Entwicklungen stark beeinflusst. Siehe dazu beispielhaft In der Zwischenzeit kann Künstliche Intelligenz im Projektmanagement genutzt werden – beispielsweise im Projektmarketing.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Übernimmt die Künstliche Intelligenz jetzt alles?

Die schon vor Jahrzehnten thematisierte “Künstliche Intelligenz” basiert auf der Annahme “that every aspect of learning or any other feature of intelligence can in principle be so precisely described that a machine can be made to simulate it” (McCarthy et al., 1955:2). Die aktuellen Entwicklungen von ChatGPT 3.5 oder ChatGPT 4 (um nur Beispiele zu nennen) scheinen McCarthy zu bestätigen . Es hat den Anschein, als ob die Künstliche Intelligenz alle Lebensbereiche verändert, erweitert oder sogar ganz übernimmt (z.B. bestimmte Arbeitsbereiche). Doch ist das wirklich so? Dazu habe ich folgenden Text gefunden:

KI als neue Weltlenkerin? Nein! Zumindest für absehbare Zeit ist ein solches Horrorszenario nicht zu befürchten. Zwar werden die Änderungen im Alltagsleben durch KI stärker als bisher erkennbar – aber trotzdem: Bei KI-Systemen handelt es sich bei weitem nicht um eine dem Menschen vergleichbare Intelligenz, sondern eher um sehr spezifische Nischenfähigkeiten, die bei eng definierten Aufgaben überlegen sind, aber außerhalb ihres Daseinszwecks oft bei den einfachsten Tätigkeiten scheitern. Sie können viel, haben aber klare Limitationen. Während Alpha Zero, eine Schach-KI, zwar den Schachweltmeister besiegen kann, fehlt Computern eigener Antrieb, Willensfreiheit, Bewusstsein, Fähigkeit zur Selbstreflexion und Verständnis unserer Welt. Sinn, Verstehen und Verantwortung sind Konzepte, die für KI schon kategorial unpassend sind. KI kann damit auch weder böswillige noch heimtückische Intentionen verfolgen und auch keine Verantwortung für ihr Tun übernehmen – verantwortlich ist und bleibt der Mensch” (Ehlers, U.-D. (2023:271-272): Wie wollen wir leben?, in Schmohl et al. (Hrsg.) (2023): Künstliche Intelligenz in der Hochschulbildung, S. 271-278.

Den Hinweis auf einen Kategorienfehler hat auch Howard Gardner in seiner Betrachtung von menschlicher Intelligenz thematisiert, und damit die menschliche Intelligenz von den Möglichkeiten einer Künstlichen Intelligenz unterschiedenen. Siehe dazu auch

Artificial Intelligence Index Report 2023

Alle sprechen und schreiben über Künstliche Intelligenz (KI) – oder englischsprachig Artificial Intelligence (AI) -wobei vieles auch bewusst tendenziell dargestellt wird. Die Befürworter schreiben alles schön, und die Gegner alles schlecht, doch dazwischen gibt es noch ein Kontinuum von Möglichkeiten. So eine differenzierte Betrachtung findet man oftmals nur in wissenschaftlichen Veröffentlichungen. Beispielsweise haben verschiedene Autoren den Artificial Intelligence Index Report 2023 veröffentlicht, der viele verschiedene Perspektiven auf das Thema beleuchtet.

Quelle: Nestor Maslej, Loredana Fattorini, Erik Brynjolfsson, John Etchemendy, Katrina Ligett, Terah Lyons, James Manyika, Helen Ngo, Juan Carlos Niebles, Vanessa Parli, Yoav Shoham, Russell Wald, Jack Clark, and Raymond Perrault, “The AI Index 2023 Annual Report,” AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA, April 2023 | PDF.

Der Report enthält 10 Takeaways:
1Industry races ahead of academia.
2Performance saturation on traditional benchmarks.
3AI is both helping and harming the environment.
4The world’s best new scientist … AI?
5The number of incidents concerning the misuse of AI is rapidly rising.
6The demand for AI-related professional skills is increasing across virtually every American industrial sector.
7For the first time in the last decade, year-over-year private investment in AI decreased.
8While the proportion of companies adopting AI has plateaued, the companies that have adopted AI continue to pull ahead.
9Policymaker interest in AI is on the rise.
10Chinese citizens are among those who feel the most positively about AI products and services. Americans … not so much.
ebd. Seiten 3-4.

Wir befassen uns aktuell auch mit dem Möglichkeiten, KI im Projektmanagement einzusetzen. Dabei testen wir gerade speziell die Nutzung von ChatGPT im klassischen, plangetriebenen Projektmanagement. Siehe dazu auch Motivationsfaktoren und Fragen für den Einstieg in das Thema Künstliche Intelligenz (KI).

In den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK) gehen wir auf diese Zusammenhänge ein. Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Digitalisierung – inkl. KI – im Projektmanagement

Die aktuelle Ausgabe 1/2023 der Zeitschrift projektmanagementaktuell befasst sich mit der Digitalisierung im Projektmanagement. Schaut man sich diese Ausgabe etwas genauer an ist zu erkennen, dass es den Beitrag Wie entwickelt sich das Projektmanagement und warum?, oder auch einen Schwerpunkt zur Nutzung von KI (Künstlicher Intelligenz) im Projektmanagement gibt. Ich hätte mir daher einen etwas aussagefähigeren Titel gewünscht.

Wir experimentieren gerade mit ChatGPT im Projektmanagement. Die ersten Ergebnisse sind vielversprechend – es kommt sehr auf den Input an, auf die Prompts, damit es zu guten Ergebnissen kommt. Dazu braucht man auch etwas Übung. Siehe dazu auch In der Zwischenzeit kann Künstliche Intelligenz im Projektmanagement genutzt werden – beispielsweise im Projektmarketing.

In den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK) gehen wir auf diese Zusammenhänge ein. Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Nextcloud Hub 4 mit “ethical AI” Integration – Open Source

Wir nutzen Nextcloud für die kollaborative Zusammenarbeit, zusammen mit OpenProject, und für Boards usw. Dabei ist es uns wichtig, dass wir Nextcloud als Open Source Anwendung auf unseren Servern betreiben können und somit alle Daten nicht bei Big Tech landen.

Die Entwicklung bei Nextcloud ist insgesamt schon erstaunlich: Begonnen hat alles (erst) vor 6 Jahren, u.a. damit, Dateien zu synchronisieren – ähnlich Dropbox etc. In der Zwischenzeit ist Nextcloud zu einer Kollaborationsplattform geworden, die den bekannten Plattformen der Big Tech Konzernen immer ebenbürtiger wird – und das alles Open Source.

Mit dem Hub 4 hat Nextcloud nun die Möglichkeiten stark erweitert – siehe dazu diesen Blogbeitrag vom 21.03.2023. Neben einem Smart Picker, Speech-to-Text mit Whisper, Image Generation mit Dall-E-2 und StableDiffusion, gibt es auch eine ChatGPT-Integration. Das alles ist schon sehr erstaunlich, doch finde ich folgenden Punkt noch beeindruckender:

“Our Ethical AI Rating is designed to give a quick insight into the ethical implications of a particular integration of AI in Nextcloud. We of course still encourage users to look more deeply into the specific solution they use, but hope that this way we simplify the choice for the majority of our users and customers” (Quelle). Die Grafik am Anfang des Beitrags zeigt die Ratings.

Quelle: https://nextcloud.com/de/blog/nextcloud-ethical-ai-rating/

Der Run auf AI-Anwendungen ist aktuell schon groß, und wird weiter stark zunehmen. Es ist daher eine sehr gute Hilfe, ein Ranking zu den verschiedenen Möglichkeiten der AI-Nutzung zu erhalten. Diese Entwicklung läuft parallel zu den ethischen Richtlinien der Europäischen Union zur Nutzung von Künstlicher Intelligenz (AI: Artificial Intelligence). In den kommenden Wochen werden wir unsere Nextcloud auf die beschriebene Version (Hub 4) updaten, und die vielfältigen Möglichkeiten ausprobieren.

In den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK) gehen wir auf diese Entwicklungen ein. Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

In der Zwischenzeit kann Künstliche Intelligenz im Projektmanagement genutzt werden – beispielsweise im Projektmarketing

Image by talha khalil from Pixabay

Der Hype um die Künstliche Intelligenz , und in der letzten Zeit speziell um ChatGPT 3 (seit einigen Tagen auch CHatGPT 4) zeigt deutlich auf, dass es jetzt darauf ankommt, die neuen Möglichkeiten zu nutzen. In einem Interview hat Prof. Doris Wessels einige konkrete Möglichkeiten zur Nutzung von ChatGPT für das Projektmarketing aufgezeigt.

“Wir können KI heute nutzen, um Texte, Bilder und Grafiken für das Projektmarketing zu generieren. Auch KI-generierte Videos sind möglich, die komplexe Sachverhalte erklären. Was für uns wichtig ist: KI kann dies alles in überzeugender, professioneller Qualität produzieren. Und es ist heute ziemlich einfach” (Steeger, O. (2023): Künstliche Intelligenz revolutioniert Projektmarketing, in: projektmanagementaktuell 1.2023).

Dabei wird Content zielgruppenspezifisch mit Hilfe von ChatGPT für alle Interessengruppen/Stakeholder konfiguriert. Entscheidend ist hier der Input.

“Entscheidend für den Output ist, wie der Input – also der Prompt – formuliert ist” (ebd.).

Das ist zwar gewöhnungsbedürftig, dennoch mit etwas Übung gut machbar. Weiterhin bieten immer mehr Anbieter auch zusätzliche Tools an, die über eine API-Schnittstelle die Möglichkeiten der KI erweitern.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

GPT-4 Developer Livestream

Es ist schon unglaublich, welche Möglichkeiten sich durch OpenAI und speziell GPT-4 ergeben. Es kommt nun darauf an, diese Möglichkeiten sinnvoll einzusetzen. Wie alle technologischen Entwicklungen hat auch Künstliche Intelligenz (KI, oder AI) zwei Seiten: Vorteile und Nachteile. Diese Ambivalenz sollte immer bedacht werden, doch sollten nicht immer nur die Nachteile im Vordergrund stehen. Es liegt an uns, was wir daraus machen.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer

Hybrid Intelligence: Menschliche und künstliche Intelligenz

Der Begriff “Intelligenz” wird sehr oft und in verschiedenen Zusammenhängen verwendet. Es geht einerseits um die menschliche Intelligenz (Human Intelligence) und andererseits auch um Künstliche Intelligenz (KI) oder Artificial Intelligence (AI). Dabei werden immer wieder (dumme Fragen) zum Entweder-Oder gestellt – also in dem Sinne: Was ist besser, menschliche Intelligenz oder Künstliche Intelligenz?

Wir leben in einer Zeit der reflexiven Modernisierung, bei der es zu Entgrenzung und Kontingenz in allen Bereichen kommt – auch bei dem Konstrukt “Intelligenz”. Es ist daher nicht erstaunlich, dass sich das Center for Hybrid Intelligence gerade damit befasst, wie menschliche und künstliche Intelligenz in einer hybriden Form betrachtet werden können.

Hybrid Intelligence (HI) is defined as the ability to achieve complex goals by combining human and artificial intelligence, thereby reaching superior results to those each of them could have accomplished separately, and continuously improve by learning from each other (Dellermann et al. 2019)”.

Auf der Website wird darauf hingewiesen, dass divergentes und konvergentes Denken für kreative Prozesse wichtig sind. Neben dem Begriff der “Intelligenz” kommt somit noch der Begriff “Kreativität” hinzu. Geht man davon aus, dass diese Begriffe ineinander spielen, vom jeweiligen Kontext abhängig sind, und auf verschiedenen Ebenen wie Individuum, Gruppe, Organisation und Netzwerk wirksam werden können wird deutlich, wie umfangreich der Forschungsgegenstand ist.

Siehe dazu auch Freund, R. (2016): Cognitive Computing and Managing Complexity in Open Innovation Model. Bellemare, J., Carrier, S., Piller, F. T. (Eds.): Managing Complexity. Proceedings of the 8th World Conference on Mass Customization, Personalization, and Co-Creation (MCPC 2015), Montreal, Canada, October 20th-22th, 2015, pp. 249-262 | Springer und Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk. Dissertation, Verlag Dr. Kovac.