Aktuell drehen sich die Diskussionen bei der Nutzung von Künstlicher Intelligenz (AI: Artificial Intelligence) hauptsächlich noch um die genutzten LLM: Large Language Models (Trainingsdatenbanken), und darum, ob diese eher closed-source oder open-source sein sollten. Wie in der Abbildung zu sehen ist, zeichnet sich darüber hinaus schon ein weiterer großer Trend ab: AI Agenten.
“Based on the definition of the International Organization for Standardization, an AI agent can be broadly defined as an entity that senses percepts (sound, text, image, pressure etc.) using sensors and responds (using effectors) to its environment. AI agents generally have the autonomy (defined as the ability to operate independently and make decisions without constant human intervention) and authority (defined as the granted permissions and access rights to perform specific actions within defined boundaries) to take actions to achieve a set of specified goals, thereby modifying their environment” (WEF 2024).
Neben den Large Language Models (LLM) kommen somit bei AI Agenten u.a. auch noch Daten von Sensoren und möglicherweise menschliches Feedback hinzu. Daraus ergeben sich ganz neue Möglichkeiten bei komplexen Problemlösunmgsprozessen.
Natürlich können AI Agenten Typen unterschieden werden, beispielsweise in deterministic und non-deterministic etc. Auch kann ein AI Agenten System aus ganz verschiedenen AI Agenten entstehen. Diese wenigen Hinweise zeigen schon auf, welche vielversprechenden neuen Möglichkeiten/Anwendungen sich ergeben können. Natürlich immer unter der Prämisse der Transparenz und Offenheit, um Missbrauch zu verhindern. Es liegt für mich daher auf der Hand. sich mit Open Source AI Agenten zu befassen.