Mit Hilfe der Stacey-Matrix klassische und agile Vorgehensmodelle im Projektmanagement abgrenzen

Vgl. Komus (2018) und eigene Ergänzungen

Wenn es darum geht, Klassische Vorgehensmodelle (Plangetriebene Vorgehensmodelle) und Agile Vorgehensmodelle abzugrenzen, wird oftmals die Stacey-Matrix herangezogen. – obwohl es mit dem Cynefin-Ansatz, dem Vorschlag von Boehm & Turner usw. auch andere Möglichkeiten gibt.

In der Stacey-Matrix werden auf der Y-Achse Anforderungen an das Projekt von “weitreichend klar” bis “geringe Klarheit” positioniert. Hier geht es somit um das WAS. Auf der X-Achse geht es um Technik/Methode, die für das Projekt “im Griff” oder auch “unklar/unsicher” sein können. Hier geht es um das WIE (Siehe Abbildung).

Es ergeben sich daraus drei Bereiche: Simpel, Kompliziert und Komplex. Weiterhin können über die Diagonale die geeigneten Vorgehensmodelle abgeleitet werden. Simpel bedeutet hier, dass die Anforderung als Routinetätigkeit angesehen werden kann. KVP ist die Abkürzung für “Kontinuierlichen Verbesserungsprozess” oder auch Kaizen. Das bedeutet, um die Anforderungen zu erfüllen, muss der Routineprozess verbessert werden. Reicht das nicht mehr aus, so kommen wir in den Bereich des (Klassischen) Projektmanagements, zu dem es Normen und Standards gibt, die sich in vielen Branchen bewährt haben.

Werden die Anforderungen und auch Technik/Methode immer unklarer, kommen wir von dem komplizierten Bereich immer stärker in einen komplexen Bereich, in dem mehr Selbstorganisation gefordert ist, um das Projekt zum Erfolg zu führen. Mit Kanban, Scrum und Design Thinking sind hier nur drei von vielen Vorgehensmodellen genannt, die dem Agilen Projektmanagement zugerechnet werden.

Der Vorteil der Stacey-Matrix liegt darin, dass sie recht einfach umsetzbar ist und somit einen schnellen und guten Einstieg dafür bietet herauszufinden, welches Vorgehensmodell für ein Projekt geeignet erscheint.

Nachteile der Stacey-Matrix sind: (1) Es sind nur zwei Dimensionen zu bewerten – bei einem komplexen Projekt möglicherweise zu wenig, (2) Das Hybride Projektmanagement wird hier nur indirekt thematisiert. Man könnte den Bereich zwischen “Kompliziert” und “Komplex” dafür nehmen, was allerdings recht ungenau wäre.

Zur Verbesserung bietet es sich an ein Analysetool zu verwenden, das mehrere Dimensionen berücksichtigt und auch die Möglichkeit des Hybriden Projektmanagements enthält. Siehe dazu Projektmanagement: Einfaches Tool zur Analyse des angemessenen Vorgehensmodells – Planbasiert, Hybrid, Agil.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Sensor Community: Umweltdaten – Open Data

Screenshot Sensor Community Website

Wir haben uns in der Vergangenheit daran gewöhnt, dass es vereinzelt Messstationen gab, an denen Umweltdaten generiert und oft von Behörden genutzt wurden. In der Zwischenzeit gibt es eine Sensor Community, bei der jeder mitmachen, und Umweltdaten frei zur Verfügung stellen kann – als Open Data.

Wie in der Abbildung zu erkennen ist, gibt es in Europa schon sehr viele, die diesen Ansatz unterstützen, und Messpunkte und Messdaten zur Verfügung stellen. Weltweit gibt es aktuell 12.101 Sensoren in 76 Ländern mit 30.703.440.715 Datenpunkten.

Da die Daten frei zur Verfügung gestellt werden (Open Data) können daraus auch eigene/neue Dienstleistungen oder auch Produkte entwickelt werden. Dieser Innovationsansatz wird von Eric von Hippel als Democratizing Innovation beschrieben. So eine Perspektive auf Innovation ist ganz anders als die übliche, die von Innovationen ausgeht, die Organisationen/Unternehmen generieren.

Siehe dazu auch Von Democratizing Innovation to Free Innovation.

Kompetenzprofile eines Fachmanns, einer Führungskraft und eines Projektmanagers im Vergleich

Eigene Darstellung

Warum ist ein Fachmann (oder auch eine Fachfrau) oftmals nicht in der Lage, Führungsaufgaben zu übernehmen, bzw. als Projektmanager erfolgreich zu sein? Die Antwort auf die Frage finden wir in den jeweiligen Kompetenzprofilen.

In der Abbildung ist das Kompetenzprofil eines Fachmanns aus dem Automobilbereich zu erkennen (rot gestrichelte Linie). Es ist verständlich, dass die Fachkompetenz am stärksten ausgeprägt ist, die Methodenkompetenz etwas weniger und die Sozial- und Persönlichkeitskompetenzen noch etwas weniger. Der Fokus liegt ganz klar auf der fachlichen Dimension.

Eine Führungskraft hat demgegenüber ein ganz anderes Profil (blaue gestrichelte Linie). Hier sind die Sozial- und Persönlichkeitskompetenzen stärker als die Fach- oder Methodenkompetenz ausgeprägt.

Das Kompetenzprofil eines Projektmanagers (grüner Bereich) zeigt, das hier alle Kompetenzdimensionen recht stark ausgeprägt sein sollen. Die Rolle eines Projektmanagers ist somit in vielfältigen Dimensionen anspruchsvoll. Dabei können in manchen Bereichen Tools – bis zu KI-Agenten – eine sinnvolle Ergänzung sein. Siehe dazu auch Persönliche und soziale Kompetenzen von Projektmanagern und KI-Systeme.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

AI: Was ist der Unterschied zwischen Open Source und Open Weights Models?

In verschiedenen Beiträgen habe ich schon erläutert, dass sich Open Source AI und Closed Source AI unterscheiden. Die bekannten Closed Source AI Modelle wie z.B. ChatGPT von (OpenAI) sind beispielsweise nicht wirklich Open Source sind, da dsolche Modelle intransparent sind und den eigentlichen Zweck haben, wirtschaftliche Gewinne zu generieren – koste es was es wolle. Siehe dazu Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften.

Zwischen diesen beiden Polen Open Source AI und Closed Source AI gibt es allerdings – wie immer – ein Kontinuum von weiteren Möglichkeiten. Beispielsweise sind LLama, Mistral und Gemma nicht so ohne weiteres den beiden Extremen zuzuordnen, da diese Modelle teilweise offen sind. Solche Modelle werden Open Weights Models genannt:

“As a result, the term “Open Source” has been used to describe models with various levels of openness, many of which should more precisely be described as “open weight” models. Among the Big AI companies, attitudes towards openness vary. Some, like OpenAI or Anthropic, do not release any of their models openly. Others, like Meta, Mistral or Google, release some of their models. These models — for example, Llama, Mistral or Gemma — are typically shared as open weights models” (Tarkowski, A. (2025): Data Governance in Open Source AI. Enabling Responsible and Systemic Access. In Partnership with the Open Source Initiative).

Warum nur werden solche Modelle angeboten? Der Grund kann sein, dass man mit dieser Strategie versucht, dem Regulierungsbestreben z.B. der Europäischen Union entgegenzuwirken. Ich hoffe, dass das nicht funktioniert und Big Tech gezwungen wird, sich an die Spielregeln in der Europäischen Union zu halten. Aktuell sieht es so aus, dass die neue Regierung der USA die Europäische Union auch bei diesem Thema vor sich hertreiben möchte.

Steckbrief zum Wasserfallmodell: Vorteile und Nachteile

Quelle: Timinger (2021)

In der Vergangenheit wurden hauptsächlich die Nachteile des klassischen, plangetriebenen Projektmanagements herausgestellt. Als Paradebeispiel (Negativ-Beispiel) wurde oft das Wasserfallmodell herangezogen, das nach der Meinung vieler sogenannter Experten nicht mehr zeitgemäß sei. Siehe dazu auch OpenProject: Anmerkungen zum Kritischen Weg und zu Meilensteinen und Einige Anmerkungen zum “Wasserfall-Modell” auf Basis des Originalartikels von Royce (1970.

Alles sollte (musste?) in Zukunft agil durchgeführt werden. Prominente Vorgehensmodelle waren und sind hier Scrum (Framework), Kanban, DevOps etc.

Wie bei allen neuen Ansätzen entwickelte sich daraus auch ein lohnenswertes Geschäftsmodell, von dem immer mehr Beteiligte profitieren wollten, und auch noch profitieren wollen. Nach vielen Jahren der praktischen Umsetzung stellte sich allerdings heraus, dass viele Organisationen agile Vorgehensmodelle nicht, oder nur in abgewandelter Form umsetzen, bzw. umsetzen können. Siehe dazu Hybrides Projektmanagement hat sich in vielen Unternehmen durchgesetzt (HELENA-Studie) und PMI (2024) Global Survey: Hybrides Projektmanagement wird immer wichtiger.

Es ist an der Zeit, sich die Vorteile und Nachteile von Vorgehensmodellen genauer anzusehen, um das jeweils geeignete Vorgehensmodell – bzw. deren Kombinationen – bestimmen zu können. Siehe dazu DAS Projektmanagement-Kontinuum in der Übersicht.

In der Abbildung sind die Vorteile und Nachteile für das Wasserfall-Modell dargestellt. Ja, das Modell ist ineffizient bei wenig planbaren Projektgegenständen und sich ändernden Anforderungen. Doch es gibt auch Vorteile, wie die klaren Strukturen, die manches vereinfachen. Schauen Sie sich die Übersicht an und bilden Sie sich ihre eigene Meinung dazu.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Open LLMs for Transparent AI in Europe

Screenshot Open Euro LLM

Wie schon in dem Beitrag Digitale Souveränität: Europa, USA und China im Vergleich dargestellt, haben China, die USA und Europa unterschiedliche Herangehensweisen, mit Künstlicher Intelligenz umzugehen.

Es wundert daher nicht, dass sich die neue Regierung in den USA darüber beschwert, dass Europa die Entwicklung und Nutzung Künstlicher Intelligenz in Schranken regulieren will. Ich hoffe, Europa ist selbstbewusst genug, sich diesem rein marktwirtschaftlich ausgerichteten Vorgehen der USA zu widersetzen, ohne die Möglichkeiten einer Nutzung und Entwicklung von Künstlicher Intelligenz zu stark einzuschränken. Der Einsatz Künstlicher Intelligenz wird gravierende gesellschaftliche Veränderungen nach sich ziehen, sodass es auch erforderlich, gesellschaftlich auf diese Entwicklung zu antworten.

Neben China und den USA kann es Europa durchaus gelingen, beide Schwerpunkte (USA: Kapital getrieben, China: Politik getrieben) zur Nutzung von Künstliche Intelligenz in einem Hybriden Europäischen KI-Ansatz zu verbinden. Das wäre gesellschaftlich eine Innovation, die durchaus für andere Länder weltweit interessant sein könnte.

Open Euro LLM ist beispielsweise so eine Initiative, die durchaus vielversprechend ist. Wie in dem Screenshot zur Website zu erkennen ist, setzt man bei Open Euro LLM auf Offenheit und Transparenz, und auch auf europäische Sprachen in den Trainingsdatenbanken der Large Language Models (LLM). Beispielhaft soll hier der Hinweis auf Truly Open noch einmal herausgestellt werden:

Truly Open
including data, documentation, training and testing code, and evaluation metrics; including community involvement

In Zukunft wird es meines Erachtens sehr viele kleine, spezialisierte Trainingsdatenbanken (SLM: Small Language Models) geben, die kontextbezogen in AI-Agenten genutzt werden können. Wenn es um Kontext geht, muss auch die kulturelle Vielfalt Europas mit abgebildet werden. Dabei bieten sich europäische Trainingsdatenbanken an. Siehe dazu auch

CAIRNE: Non-Profit Organisation mit einer europäischen Perspektive auf Künstliche Intelligenz

Open Source AI-Models for Europe: Teuken 7B – Training on >50% non English Data

Open Source AI Definition – 1.0: Release Candidate 2 am 21.10.2024 veröffentlicht

Open Source AI: Besser für einzelne Personen, Organisationen und demokratische Gesellschaften

AI Agents: Langflow (Open Source) auf unserem Server installiert

Ollama: AI Agenten mit verschiedenen Open Source Modellen entwickeln

Künstliche Intelligenz (KI oder AI: Artificial Intelligence) einzusetzen ist heute in vielen Organisationen schon Standard. Dabei nutzen immer noch viele die von den kommerziellen Anbietern angebotenen KI-Systeme. Dass das kritisch sein kann, habe ich schon in vielen Blogbeiträgen erläutert.

Wir wollen einen anderen Weg, aufzeigen, der die Digitale Souveränität für Organisationen und Privatpersonen ermöglicht: Open Source AI und eine Open Source Kollaborationsplattform. Siehe dazu Von der digitalen Abhängigkeit zur digitalen Souveränität.

Im ersten Schritt haben wir unsere NEXTCLOUD über einen ASSISTENTEN mit Künstlicher Intelligenz verknüpft, wobei alle Daten auf unserem Server bleiben. Siehe LocalAI (Free Open Source Software): Chat mit KI über den Nextcloud-Assistenten.

Im zweiten Schritt haben wir für die Entwicklung von AI-Agenten Langflow (Open Source) auf unserem Server installiert. Dabei ist es möglich, ChatGPT von OpenAI, oder über Ollama sehr viele unterschiedliche Open Source Modelle zu nutzen. Wir wollen natürlich den zweiten Weg gehen und haben daher Ollama auf unserem Server installiert.

Ollama Startseite auf unserem Server: Eigener Screenshot

In der Abbildung ist zu sehen, dass wir für den ersten Test zunächst vier Modelle installiert haben, inkl. DeepSeek-R1 und LLama 3.2. Demnächst werden wir noch weitere Modelle installieren, die wir dann in Langflow integrieren, um AI-Agenten zu entwickeln. In den kommenden Wochen werden wir über die Erfahrungen berichten.

Von den Komplexitätsdimensionen des Projektmanagements zum Kompetenzmanagement

Der Begriff Komplexität ist im Projektmanagement sehr wichtig. Projektmanagement-Standards wie IPMA, PMI oder auch Prince2 bieten beispielsweise an, die Komplexität eines Projektes, oder vieler Projekte, nach einem definierten Ablauf abzuarbeiten. Auch agile Vorgehensmodelle wie Scrum oder auch Kanban machen hier Vorschläge. Dabei wird Wert darauf gelegt, in kleinen Iterationen vorzugehen.

Im Rahmen der Stacey-Matrix wird weiterhin versucht, anhand der beiden Dimensionen Anforderungen (bekannt – unklar) und Vorgehen (bekannt-unklar) das geeignete Vorgehensmodell zu bestimmen. Im komplexen Bereich wird dann empfohlen, agile Vorgehensmodelle einzusetzen.

Es liegt auf der Hand, dass diese Einschätzung nicht alleine aufgrund zweier Dimensionen gemacht werden sollte, da es eine Vielzahl von Einflussfaktoren auf die Komplexität im Projektmanagement gibt. In der folgenden Tabelle sind einige davon aufgelistet.

VielzahlVielfaltVieldeutigkeitVeränderlichkeit
Größe
Volumen
Reichweite
Häufigkeit
Scale
Dichte
Laufzeit
Multikonstella-
tionen

Diversität
Heterogenität
Interdiszi-
plinarität
Scope
Heterogenity
Multiplexität
Antagonismen
Konflikte
Pluralismus
Hybride
Ambiguität
Unschärfe
Unsicherheit
Konfusion
Vagheit
Intransparenz
Spielräume
Zweifel
Wahlmöglich-
keiten
Paradoxien
Überschnei-
dungen
Dynamik
Geschwindigkeit
Instabilität
Diskontinuitäten
Wachstum
Überraschungen
Volatilität
Verbesserung
Chaos
….
Komplexitätsdimensionen des Projektmanagements (Reiss 2018, in projektmanagementaktuell 3/2018)

In solch komplexen Systemen verändern sich die jeweiligen Parameter permanent, sodass eine eigene Dynamik entsteht. Es ist daher empfehlenswert, die Einschätzung darüber, ob es sich um ein kompliziertes oder komplexes Projekt handelt, mehrmals durchzuführen. Gerade am Anfang eines Projekts liegen noch nicht so viele Informationen über das Projekt vor (Cone of Uncertainty), sodass die erste Einschätzung fehlerbehaftet sein kann.

Grundsätzlich kann man davon ausgehen, dass Selbstorganisation die Antwort auf Komplexität ist. Daraus lässt sich ableiten, dass es nicht alleine erfolgversprechend ist, Standards einzusetzen, sondern dass auf allen Ebenen die Selbstorganisation zu entwickeln. Auf der individuellen Ebene, der Gruppenebene, der organisationalen Ebene und der Netzwerkebene.

Gehen wir nach Erpenbeck/Heyse von Kompetenz als Selbstorganisationsdisposition aus, so bedeutet das, in diesem Sinne Kompetenz auf der individuellen Ebene, der Gruppenebene, der organisationalen Ebene und der Netzwerkebene zu entwickeln (Kompetenzmanagement).

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Schieflage oder Krise im Projekt?

Abgrenzung Schieflage vs. Krise (Rahnenfüher, K.; Radin G. 2018, in projektmanagementaktuell 2/2018)

Oft laufen Projekt nicht so, wie man es sich wünscht. Dabei wird oft von einer Krise im Projekt gesprochen, obwohl das Projekt möglicherweise erst einmal “nur” eine Schieflage geraden ist.

Wie in der Abbildung zu erkennen ist, kann man von einer Schieflage ausgehen, wenn das Projekt mit “klassischen Mitteln” wieder in den Normalzustand zurückgeführt werden kann. In einer Krise greifen die reinen klassischen Methoden des Projektmanagements nicht mehr. Ein Projekt ist in der Krise, wenn (ebd.):

(1) Ziele: das Projekt trotz Einsatz des Teams, mit vorhandenen Mitteln und unter gegebenen Rahmenbedingungen keinerlei nennenswerte Fortschritte mehr erzielt bzw. Projektergebnisse wiederholt nicht erreicht werden,

(2) Methode: gewöhnliche Maßnahmen des Projektmanagements nicht funktionieren, um das Projekt wieder in den Plankorridor zu manövrieren ( die Diskrepanz zwischen Entwicklung des Projektumfeldes und des Projektgeschehens zunimmt und das Projekt einem vorzeitigen Ende zusteuert),

(3) Team: das im Team das Gefühl der Blockade, Ausweglosigkeit, Ohnmacht und am Ende Resignation breit macht, der Situation ausgeliefert zu sein und damit die Handlungsfähigkeiten begrenzt sind, Probleme zu lösen,

(4) Stakeholder: der Auftraggeber nicht mehr an den Erfolg des Projektes glaubt und dies auch eingesteht und kommuniziert.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Warum verfehlen viele öffentliche Projekte die ursprünglich geschätzten Kosten?

Quelle: Prudix, D. (2017), in projektmanagementaktuell 3/2017, nach Brand Eins Ausgabe 11/2015

Um die Frage aus der Überschrift des Beitrags aufzunehmen, schauen wir uns zunächst einmal die Tabelle an (Abbildung). Darin sind verschiedene öffentliche Projekte zu sehen, deren voraussichtlichen Kosten geschätzt wurden (Ursprünglich geschätzt in Mio. Euro). Die Realität zeigt jedoch, gravierende Abweichungen (aktuell geschätzte Kosten in Mio. Euro). Wie in der Quelle erwähnt, stammen die Beträge aus dem Jahr 2015.

Dennoch werfen die Unterschiede – teilweise um den Faktor 10 – Fragen auf. Großprojekte der Öffentlichen Verwaltungen stehen oft unter politischen Druck und werden dadurch teilweise “schön gerechnet”. Weiterhin fehlt es der Öffentlichen Hand an der Professionalisierung im Projektmanagement. Da hat sich in den letzten Jahren allerdings sehr viel positiv entwickelt.

Nicht zuletzt sollten wir uns auch klar machen, dass es solche Fehlplanungen nicht nur bei der Öffentlichen Hand, sondern auch bei wirtschaftlich ausgerichteten Organisationen gibt. Wir regen uns allerdings besonders – und berechtigt – darüber auf, wenn Projekte mit Hilfe von Steuergeldern nicht professionell laufen. Diese Verschwendungen im Projektmanagement im öffentlichen Sektor müssen und können reduziert werden.

Der Aspekt der Professionalisierung im Projektmanagement bei der Öffentlichen Hand (Plangetrieben – Hybrid – Agil) kann ein wichtiger Ansatz sein, die gesamte Organisation der Öffentlichen Verwaltung zu modernisieren: Organisationsentwicklung durch mehr projektorientiertes Arbeiten.

Eine moderne und wirtschaftliche Öffentliche Verwaltung mit immerhin mehr als 5 Millionen Mitarbeitern ist aktuell immer noch ein Hemmschuh bei der Lösung der vielen gesellschaftlichen Aufgaben.

Öffentliche Verwaltungen: Die S-O-S-Methode© für Großprojekte

Gegenüberstellung: Öffentliche Verwaltung und Erfolgsfaktoren von Projekten

Öffentliche Projekte: Welche wesentlichen Probleme gibt es im Projektverlauf?

Können öffentliche Infrastrukturprojekte nicht besser durchgeführt werden?

Stärkere Projektorientierung um den Ineffizienzkreislauf bei öffentlichen Verwaltungen zu durchbrechen

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.