Wissensmanagement: Kompetenzrad für Wissensmanager nach GfWM

Kompetenzrad eines Wissensmanagers (GfWM e. V. (2024): Wissensmanagement-Kompetenzkatalog | PDF)

Wissen, und der Umgang mit Wissen (Wissen managen, Wissens-System managen) sind in einem turbulenten Umfeld zu wichtigen Wettbewerbsfaktoren von Organisationen geworden. Dabei hat sich das Verständnis von und über Wissen mit der Zeit verändert. Siehe dazu beispielsweise Reflexive Modernisierung und “reflexives Wissen” als neue Wissensform.

Personen, die sich mit Wissen beruflich befassen wollen/sollen, müssen daher entsprechende Kompetenzen mitbringen, bzw. entwickeln. Die Gesellschaft für Wissensmanagement e.V. (GfWM e.V.) hat zu diesem Thema im Januar 2024 einen Wissensmanagement-Kompetenzkatalog (Version 2.2| PDF) veröffentlicht. In der dazugehörenden Excel-Datei (XLSX) können Sie Ihr SOLL- und IST-Profil erfassen. Ein Beispiel dazu sehen Sie in der Abbildung weiter oben, die aus dem Kompetenzkatalog entnommen ist.

Der eine oder andere Punkt irritiert mich hier allerdings. Beispielsweise werden die Begriffe “Fertigkeiten”, Fähigkeiten” und “Kompetenzen” in dem Beispiel-Kompetenzrad dargestellt, obwohl der Schluss von Persönlichkeitseigenschaften (Fähigkeiten/Fertigkeiten) möglicherweise falsch ist (vgl. Erpenbeck).

Weiterhin kommt der Begriff “Emotion” im gesamten Wissensmanagement-Kompetenzkatalog überhaupt nicht vor. Möglicherweise ist das Thema indirekt in den Kompetenzen zu finden, allerdings nicht so prominent, wie es sein sollte.

John Erpenbeck hat in seinen Forschungen dazu festgestellt, dass für den Kompetenzerwerb eine Emotionale Intelligenz/Kompetenz elementar ist. Siehe dazu auch Kompetenz und Intelligenz: Eine Gegenüberstellung. Das Konstrukt der Emotionalen Intelligenz geht dabei auf Salovey/Mayer (1990) zurück. Populär gemacht hat den Begriff Goleman mit seinen verschiedenen Veröffentlichungen.

Arnold, R. (2005:123) formuliert es so: “Emotional kompetent ist jemand, der um die ´Selbstgemachtheit´ emotionaler Reaktionen weiß, die Fülle möglicher Gefühlzustände aus eigenem Erleben kennt (´emotional literacy´) und über ´Techniken´ verfügt, diese mit situationsangemessenem Verhalten in Einklang zu bringen.”

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Projektmanagement: Protokolle als einfacher Einstieg zur Nutzung Künstlicher Intelligenz

Dave Garret Using AI Tools to Make Meeting Minutes Magic! (PMI-Blog vom 11.01.2024)

Der Einsatz von Künstlicher Intelligenz im Projektmanagement kann an vielen Stellen erfolgen. In dem Blogbeitrag von Dave Garret Using AI Tools to Make Meeting Minutes Magic! (PMI-Blog vom 11.01.2024) wird empfohlen, Sitzungsprotokolle (Meeting Minutes) für den Einstieg zur Nutzung von KI zu nutzen.

Der Autor hat zur Erläuterung in einer Abbildung zwei Achsen gegenüber gestellt. Y-Achse: Komplexität des Tasks von niedrig bis hoch, X-Achse: Wer bearbeitet den Task (Maschine oder Mensch)?

Die eingetragenen Tasks zeigen, dass es in der Abbildung ein Kontinuum von Möglichkeiten gibt. Es geht wie so oft nicht um ein “Entweder Maschine (KI) oder Mensch”, sondern um ein sinnvolles “sowohl-as-auch”.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.

Generative Künstliche Intelligenz für Industrie und Behörde: Chancen und Risiken

Künstliche Intelligenz (KI) ist in unserem Alltag nicht mehr wegzudenken. Es vergeht kein Tag, an dem nicht von neuen, beeindruckenden Möglichkeiten berichtet wird. Große Technologie-Konzerne, Beratungsfirmen usw. zeigen oft nur die eine, positive Seite von Künstlicher Intelligenz. Es ist daher gut, dass das Bundesamt für Sicherheit in der Informationstechnik (BSI) den Leitfaden Generative KI-Modelle (PDF) herausgebracht hat, in dem es um die Chancen und Risiken für Industrie und Behörden geht. Am Ende werden die wichtigsten Punkte für eine systematische Risikoanalyse zusammengefasst (S. 3.-31):

Sensibilisierung von Nutzenden

Durchführung von Tests

Umgang mit sensiblen Daten

Herstellung von Transparenz

Überprüfung von Ein- und Ausgaben

Beachtung von (Indirect) Prompt Injections

Auswahl und Management der Trainingsdaten

Praktische Expertise aufbauen

Künstliche Intelligenz bei Akzeptanzprojekten

Künstliche Intelligenz (KI) bietet auf allen gesellschaftlichen Ebenen Anwendungsmöglichkeiten – auch im Projektmanagement. Dabei stellt sich die Frage, wie Künstliche Intelligenz (KI) bei verschiedenen Projekten eingesetzt werden kann. Barth/Sarstedt (2024) schlagen dazu in Anlehnung an Kuster (2022) vor, verschiedene Projektkategorien zu unterscheiden: Standardprojekte, Potenzialprojekte, Akzeptanzprojekte und Pionierprojekte.

“Bei steigender sozialer Komplexität ist oft ein geschickter Umgang mit menschlichen Widerständen und Emotionen erforderlich, um eine Akzeptanz des Projektergebnisses herbeizuführen. Als Beispiel solcher Akzeptanzprojekte sei hier eine unternehmensinterne Umstrukturierung betrachtet. Berücksichtigt man nun die oben diskutierten Limitierungen der KI sowohl im sensorischen Wahrnehmen als auch im empathischen Erfassen sozialer Situationen, so erscheint die KI als nicht ausreichend, es benötigt vielmehr das menschliche Element, um Belegschaft und Kunden gegenüber mit Fingerspitzengefühl zu agieren. KI kann insofern nicht mehr als „agierende Einheit“ eingesetzt werden, es kann dem menschlichen Projektmanager jedoch in einem sehr umfangreichen Sinne als ein „komplexes Werkzeug“ dienen (komplexe Planmodellierung, ablauforganisatorische Simulation etc.), welches er in seiner Rolle als „Handwerksmeister des Projektmanagements“ in Ergänzung zu seinem übrigen Handwerkszeug einsetzen kann” (ebd.).

Auch in dem Beitrag Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte wird deutlich, um welche Aufgaben es dabei geht. Siehe dazu auch Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI).

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.

Wissensmanagement Bottom-Up: Was ist darunter zu verstehen?

Der Umgang mit Wissen kann in Organisationen unterschiedlich unterstützt werden. Beispielsweise kann es von der Geschäftsführung angestoßene Initiativen (Top-Down) geben, die oftmals ein Geschäftsorientiertes Wissensmanagement beinhalten. Diese Ansätze können auch durch Initiativen “von unten”, also Bottom-Up, erfolgen. Ein gutes Beispiel dafür ist die eigene Entwicklung von Inhalten oder sogar Kursen aus der täglichen Arbeit heraus.

“Entwicklung von Lernkursen und Medien durch die Lernarchitekt*innen, die Lernbegleitenden und die Lernenden selbst (Wissensmanagement bottom-up)

> Entwicklung von Lehrgängen mit allen erforderlichen Elementen.

> Automatisierte Erstellung von Case Studies, Videos und Podcasts auf Basis von vorgegebenen Texten.

> Automatisierte Erstellung von Grafiken, Videos, Podcasts, interaktiven Elementen, Simulationen.

(vgl. Meyer (2023), zitiert in Edelkraut, F.; Sauter, W. (2024): Future-Skills-Training. Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.).

Die konkrete Umsetzung kann z.B. mit H5P-generierten Inhalten erfolgen, die in dem Lern-Management-System (LMS) Moodle auf die jeweiligen Bedürfnisse von einzelnen Personen, Projektteams und der ganzen Organisation abgestimmt werden.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Ziele definieren: PAM als Alternative zu SMART

Bei der Definition von Zielen ist es oft hilfreich, sich an den SMART-Kriterien zu orientieren. Diese Vorgehensweise ist hinlänglich bekannt, doch gibt es auch eine Alternative, die mit PAM abgekürzt wird. Dazu habe ich etwas bei Hruschka et al. (2022) gefunden

P: Purpose – Was ist der Zweck?

A: Advantage – Was ist der betriebliche Vorteil/Mehrwert? – Business Advantage

M: Measure – Wie würde man diesen Vorteil messen?

Die Autoren weisen darauf hin, dass PAM im Gegensatz zu SMART nicht auf die Zeit eingeht, was dazu führt, dass der Mehrwert eines Ziels im Mittelpunkt der Diskussion steht. Die SMART- und die PAM-Kriterien können gut als Checklisten in Projekten eingesetzt werden.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Wissensmanagement: Die Kontextbindung von Wissen

Brödner, P.; Helmstädter, E.; Widmaier, B. (Hrsg.) (1999): Wissensteilung – Zur Dynamik von Innovation und kollektivem Lernen (Zur Einführung). München und Mering

Wissen wird situativ konstruiert (Konstruktivismus). Das bedeutet, dass beispielsweise die selben Daten und Information im Einkauf (Kontext 1) und im Verkauf (Kontext (2) zu anderen Wissenskonstruktionen führen können. Die Abbildung illustriert diese und folgende Zusammenhänge.

Noch schwieriger ist es für Experten ihr Wissen (Expertise, Expertenwissen) preiszugeben (Kontext 1 – berufliche Domäne 1) , denn es handelt sich dabei hauptsächlich um implizites Wissen (1).

Dieses implizite Wissen (1) wird dann mit Hilfe von Theorien, Modellen und Begriffen de-kontextualisiert und über das dann explizierbare Wissen in einen anderen Kontext (2) übertragen. Dort wird das explizite Wissen re-kontextualisiert und über Aneignung, Internalisierung und Lernen zu einem impliziten Wissen (2) und zu Können (2).

Die Übergänge von impliziten Wissen zu expliziten Wissen – und umgekehrt – werden in dem bekannten SEKI-Modell von Nonaka/Takeuchi als eine Art Wissensspirale dargestellt. Dabei ist allerdings folgendes zu beachten: Schreyögg, G.; Geiger, D. (2003): Kann die Wissensspirale Grundlage des Wissensmanagements sein? Siehe dazu auch diesen Beitrag zum trägen Wissen.

Künstliche Intelligenz in der Berater-Branche – auch eine Wissensperspektive

Quelle: Holtel, S. (2024): The Impact of ChatGPT on the Consultancy Value Chain. Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.

Berater (Consultant) haben oft einen mehr oder weniger stark vorgegebenen Prozess für die jeweiligen Problemlösungen (Value Chain). Dieser ist in der Abbildung auf der X-Achse dargestellt: problem analysis – solution quest – experimental implementation – evaluation & refinement – external value.

Wie weiter zu erkennen ist, ist der Grad der Unsicherheit (degree of uncertainty) am Prozessanfang sehr groß (Y-Achse). Mit der Zeit, und mit dem jeweils generierten neuen Wissen, reduziert sich diese Unsicherheit, sodass eine Art Kegel entsteht (cone of uncertainty).

Die wissensebene zeigt weiterhin, dass implizites Wissen und explizites Wissen im Prozess integriert werden müssen. Die Zahlen (1), (2) und (3) verweisen darauf, dass an diesen Stellen Künstliche Intelligenz eingesetzt werden kann , was durch das ChatGPT-Symbol illustriert wurde.

Es zeigt sich auch hier, dass es zu einer angemessenen Kombination von Künstlicher Intelligenz und Menschlicher Intelligenz kommen sollte.

Stellen Sie doch auch einmal Ihren Ablauf zu Problemlösungen dar und überlegen Sie, an welchen Stellen Sie Künstliche Intelligenz einsetzen können.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Lernangst bei Veränderungsprojekten: Was ist darunter zu verstehen?

Bei Veränderungsprojekten (Change Projekten) geht es neben den rationalen Gründen auch um die mit den Veränderungen verbundenen Ängste von Mitarbeitern in Organisationen. Aktuell können beispielsweise der immer stärkere Einsatz von Künstlicher Intelligenz zu solchen Ängsten führen.

Der Organisationswissenschaftler Schein (2004) hat dazu neben der Existenzangst auch die Lernangst thematisiert. Da die Existenzangst fast (!) selbsterklärend ist, möchte ich in diesem Blogbeitrag eher auf die angesprochene Lernangst eingehen. Dazu habe ich folgendes gefunden:

“Beim Lernen werden Ängste wiederum sowohl durch den nötigen Erwerb neuer Skills oder Wissensbereiche als auch durch das ebenso notwendige Verlernen des Alten wachgerufen. Etwa Ängste

> vor vorübergehender oder dauerhafter Inkompetenz: „Ich kann das einfach nicht!“,

> aufgrund der Inkompetenz Bestrafungen oder zumindest Benachteiligungen erwarten zu müssen: „Wenn ich das nicht schaffe, verliere ich meine Position!“,

> einen persönlichen Identitätsverlust zu erleiden: „Ich war mein Leben lang Entwicklungsspezialist, wieso muss ich plötzlich auch analysieren oder testen?“,

> nicht mehr Mitglied einer bestimmten Gruppe oder Community zu sein: „Was, wenn ich in meinem Spezialgebiet plötzlich den Anschluss an meine Kollegen verliere?“”

(Leopold/Kaltenecker 2018:135).

Aus diesen Anmerkungen zur Lernangst in Veränderungsprojekten leitet sich ab, dass eine Organisationen über das Lernen ihrer Mitarbeiter, von Teams, der gesamten Organisation und in Netzwerken Bescheid wissen sollte. Das ist allerdings in vielen Organisationen nicht der Fall. Oft ist bekannt, WAS gelernt wurde (Zertifikatsinhalte usw.), allerdings nicht WIE gelernt wurde. Führungskräfte sollten sich hier einmal bei der Erwachsenenbildung umsehen, deren Schwerpunkt die “Transformation von Deutungsmustern” ist.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Welche Fragen unterstützen kritisches Denken?

In dem Blogbeitrag Kritisches Denken etwas genauer betrachtet wird erläutert, was kritisches Denken ausmacht. Daran anschließend können sechs Grundmuster Sokratischen Fragens das kritische Denken unterstützen. Gefunden habe ich diese bei North (2024), der sich dabei an Paul und Elder (2016) und Lechsenring (2018) orientiert. Probieren Sie es einfach einmal aus:

Klärendes Denken und Verstehen
• Können Sie mir ein Beispiel geben?
• Könnten Sie das weiter erklären?
• Meinten Sie X?
• Was ist das Problem, das Sie zu lösen versuchen?

Anspruchsvolle Annahmen hinterfragen
• Ist das immer so?
• Setzen Sie X voraus?
• Stimmen Sie dem X zu?
• Wenn das für ein X gilt, gilt das für alle X?

Beweismittel und Gründe untersuchen
• Warum sagen Sie das?
• Woher wissen Sie das?
• Welche Daten unterstützen dies? Warum?

Alternative Standpunkte und Perspektiven einbringen
• Gibt es Alternativen?
• Wie sieht die andere Seite des Arguments aus?
• Was macht Ihre Sichtweise besser?
• Was würde X dazu sagen?
• Können Sie an Fälle denken, in denen das nicht stimmt?

Folgen und Konsequenzen berücksichtigen
• Was wären die Folgen?
• Gibt es irgendwelche Nebenwirkungen?
• Was, wenn Sie falsch liegen?
• Wie können wir es herausfinden?
• Wenn das wahr ist, bedeutet das, dass X auch wahr ist?
• Was sollten wir dazu noch überlegen?

Meta-Fragen
• Was denken Sie, warum ich diese Frage gestellt habe?
• Was bedeutet das?
• Was könnte ich sonst noch fragen?