Wenn es um die neuen Arbeitsformen geht, wird das oft mit Arbeit 1.0 bis Arbeit 4.0 beschrieben. Der Fokus liegt dabei auf der Arbeit 4.0, obwohl es in der Gesellschaft, und damit auch in Organisationen, häufig mehrere der genannten Arbeitsformen gibt – also einen Mix von Arbeit 1.0, Arbeit 2.0, Arbeit 3.0 und Arbeit 4.0.
Dennoch ist aufgrund des veränderten Umfelds klar, dass der Anteil von Arbeit 4.0 zunimmt. Bei dieser Arbeitsform geht es um eine neuartige Form der Kollaboration, also der Zusammenarbeit, die durch neue technologische Möglichkeiten entsteht, ja getrieben wird. Technologie ist also ein Enabler (Befähiger), der auch zu mehr Raum für Kreativität führen kann. Dazu habe ich folgenden Text gefunden:
Der schwierige Teil beim neuen Arbeiten liegt weder in der Ausrufung neuer Paradigmen noch in der Qualifikation, neue Tools bedienen zu können. Natürlich braucht es beides. Aber erst danach wird es richtig spannend (…). Es sind die Folgen, die sich aus den neuen technischen Möglichkeiten ergeben (…). Dafür entsteht Raum für mehr Kreativität, mehr Synergie und mehr Effizienz. Kurz gesagt: Wir können mehr Energie in „die eigentliche Arbeit“ stecken” (Muuß-Merholz, J. (2024): Pre-empathische Zusammenarbeit als Future Skill. Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.).
Durch den Einsatz von moderner Technologie (inkl. Künstlicher Intelligenz), können Routineprozesse automatisiert und die Kollaboration auf allen Ebenen verbessert/intensiviert werden. Das schafft Freiräume für mehr Kreativität und damit möglicherweise auch zu mehr Innovationen. Diese Chancen “für die eigentliche Arbeit” sollten – bei aller Kritik an den neuen Technologien – erkannt und genutzt werden. Siehe dazu auch New Work im Projektmanagement: auf den Ebenen people, Places und Tools.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Denken ist ja schon per se eine gute Sache, doch kann Denken auch eher selbst-bestätigend sein, da wir gar nicht nach alternativen Informationen suchen, und uns möglicherweise nur mit Personen umgeben, die das gleiche Denken. Es ist ja auch nicht angenehm zu erfahren, dass es auch andere Perspektiven auf ein Thema gibt. Daraus dann in angemessener Form eine Synthese zu bilden, ist eines der vielen Merkmale des kritischen Denkens. Schauen wir uns einmal an, was darunter genauer verstanden wird:
“Kritisches Denken wird beschrieben als „die Fähigkeit, Informationen und Argumente sorgfältig zu analysieren, verschiedene Perspektiven einzunehmen, logisch zu denken und fundierte Schlussfolgerungen zu ziehen. Es beinhaltet die Fähigkeit, Annahmen zu hinterfragen, Beweise zu prüfen und sachliche Entscheidungen zu treffen“ (Metakomm 2023). Das bedeutet auch, keine Informationen zu bevorzugen, die der eigenen Meinung entsprechen oder Gegenpositionen automatisch abzuwerten” (North (2024): Kritisches Denken – eine Schlüsselkompetenz, die KI (noch) fehlt. Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.).
North hat dazu in einer anderen Veröffentlichung (Grant 2021) wertvolle Hinweise gefunden, um kritisches Denken gegenüber einer eher bestätigenden Wissenskonstruktion zu unterscheiden, und stellt beides in einer Tabelle gegenüber:
Affirmative (bestätigende) Wissenskonstruktion
Kritisches Denken
Denken und lernen ohne zu hinterfragen
Umdenken & Verlernen
In der Behaglichkeit einer Überzeugung leben
Mit dem Unbehagen des Zweifels leben
Auf bestätigende Meinungen hören, die ein gutes Gefühl geben
Aktiv Ideen und Widersprüche suchen, die zum Nachdenken anregen
Sich im Kreis Gleichgesinnter bewegen
Sich zu Menschen hingezogen fühlen, die Gedanken herausfordern
Informationen und Medien konsumieren, die die eigene Meinung bestätigen
Vielfältige Informationen und Medien suchen, die Sachverhalte aus unterschiedlichen Perspektiven betrachten
Stereotype und Vorurteile übernehmen
Stereotype und Vorurteile hinterfragen
Denken und handeln wie Prediger, die heilige Überzeugungen verteidigen, Ankläger, die der Gegenseite beweisen wollen, dass sie im Unrecht ist, Politiker, die um Zustimmung werben
Neugier entwickeln
Denken wie Wissenschaftler auf der Suche nach der Wahrheit
Selbstüberzeugung: ich habe Recht
Selbstreflektion: wie und in welchem Kontext bin ich zu meiner Erkenntnis gekommen?
Quelle: North (2024) in Anlehnung an Grant (2021)
Die Merkmale des kritischen Denkens erinnern deutlich an eine eher wissenschaftliche Herangehensweise an Themenfelder. Es wundert daher nicht, dass das kritische Denken an Universitäten immer wieder geschärft werden sollte – beispielsweise macht das die Manosh University (Englischsprachige Website) sehr ausführlich.
Darüber hinaus ist es auch für einzelne Personen, in Teams, in Organisationen und in Netzwerken wichtig, kritisches Denken zu entwickeln – gerade in Zeiten von Populismus und Künstlicher Intelligenz.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
In der Industriegesellschaft wurde/wird versucht, alles zu messen, und falls das nicht immer funktioniert hat, wurde es eben messbar gemacht. Bei diesen Zahlenspielen kamen dann auch immer wieder mathematische Berechnungen bei Menschen oder sozialen Systemen zum Einsatz. Ein wichtiger Wert war dabei oft der Durchschnitt, der dann auch noch oft zu verschiedenen Typologien herangezogen wurde. Am Beispiel des “Intelligenzquotienten” ist das gut zu sehen, denn es ergeben sich die Typen “Dumm”, Normal” und “Intelligent” aufgrund von Ähnlichkeiten in Merkmalsausprägungen. Dazu ist folgendes anzumerken:
“Die große Gefahr von Typologien liegt darin, dass sie dazu neigen, das Singuläre im Durchschnittlichen aufzulösen. (..) Christoph Kucklick kritisiert in seinem bekannten Buch „Die granulare Gesellschaft“ deshalb den Durchschnitt, den er als „Maßeinheit der Moderne“ (Kucklick 2015, S. 9) bezeichnet und schreibt: „Jeder Mensch ist ein Unikat, ein Singularium […]. Wenn man die Einzelheiten hinreichend gut kennt, dann ist der Gruppendurchschnitt irrelevant“ (ebd. S. 38ff, zitiert in Arnold 2017).
In verschiedenen Blogbeiträgen habe ich schon über implizites Wissen und explizites Wissen geschrieben. Da Arbeitshandeln implizites und explizites enthält/integriert, stellt sich die Frage, was die angemessene Auswahl beeinflusst. Möglicherweise kann es Intuition sein, die implizites und explizites Wissen verbindet/integriert:
“Importantly, intuition thus may serve as a bridge between tacit and explicit knowledge, thereby a focus on the integration of both types becomes crucial and along with that an understanding and learning process on whether and how the different components can complement each other. It enables to navigate uncertainty, make timely decisions, and respond creatively to novel situations. Intuition is particularly valuable when dealing with people-related aspects of leadership, such as understanding team dynamics, gauging employee morale, and making empathetic decisions. When employees harness their intuitive faculties, they tap into a wellspring of unspoken insights that may not find expression in formal documentation. These intuitive insights, when shared and integrated into the organizational knowledge base, enrich the collective wisdom of the workforce” (Edvinsson, L.; Szogs, A.; Szogs, G. M. (2024): Skill Is An Entity That Contains A: Cosmos, in Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 published by: Gesellschaft für Wissensmanagement e. V.).
In der genannten Quelle bei Wikipedia zum Begriff “Intuition” kommt in den Erläuterungen auch das “Bauchgefühl” vor. Das Buch Gerd Gigerenzer (2007): Bauchentscheidungen geht auf diesen Aspekt sehr ausführlich ein, und bringt dabei auch die Begriffe “Intelligenz” und “Intuition” ins Spiel. Siehe dazu diesen Blogbeitrag. Gerade unter Berücksichtigung der Entwicklung bei der Künstlichen Intelligenz sind diese Aspekte von Bedeutung.
Was in Zukunft auf uns persönlich, in Organisationen oder auch gesellschaftlich zukommt, möchten wir alle gerne genau wissen. Das war schon in der Vergangenheit so, als Astrologen aus den Sternekonstellationen die Zukunft voraussagen sollten, und es ist heute so, wenn wir Horoskope, Trendanalyse oder Zukunftsstudien lesen.
Ich möchte jetzt nicht jede Zukunftsstudie mit Horoskopen gleichsetzen, doch sollten wir uns auch bei Studien zur Zukunft immer klar machen, dass wir nicht mehr in einer Einfachen Modernisierung leben, sondern in einer Reflexiven Modernisierung angekommen sind. Das bedeutet u.a. auch eine gewisse Kontingenz –es kann also alles so kommen, oder ganz anders. Das macht es nicht einfacher, Entscheidungen zu fällen. Womit wir wieder bei der Frage sind, ob die Zukunft überhaupt vorhersehbar, vorherbestimmbar, in diesem Sinne determinierbar sein kann – oder eben alles ganz anders kommt. Wie kann man sich das alles konkreter vorstellen?
Als Beispiele möchte ich hier Future Skills 2021, oder auch European Year of Skills 2023 nennen. Es handelt sich bei beiden Initiativen um den gut gemeinten Versuch, zukünftige “Skills” darzustellen und dadurch einen konkreten Bedarf für eine (persönliche) Weiterentwicklung zu generieren (SOLL-IST-Vergleich, Lückenanalyse). Auf der Website der European Union heißt es beispielsweise: “The European Year of Skills helps people get the right skills for quality jobs and supports companies in addressing skill shortages in Europe.” Warum kann das tückisch sein?
Ein weiteres Beispiel soll das illustrieren, wobei ich natürlich weiß, dass jedes Beispiel “hinkt” – dennoch: Noch vor wenigen Jahren wurde prognostiziert, das alle Menschen vom Kindergarten bis ins hohe Alter programmieren lernen sollten. Coding war das Stichwort. In Finnland werden beispielsweise schon Kleinkinder mit dem Programmieren vertraut gemacht. Jobs in der IT-Branche versprachen hohe, ja sogar sehr Hohe Einkommen. Ich formuliere hier bewusst in der Vergangenheitsform, denn in der Zwischenzeit ist durch die rasante Entwicklung der Künstlichen Intelligenz (KI) Ernüchterung eingetreten. Die Künstliche Intelligenz ersetzt in rasender Geschwindigkeit Softwareentwickler, Programmierer usw. Aktuell gibt es wieder Studien zu den “Skills”, die benötigt werden, um in einer KI-dominierten Arbeitswelt zurecht zu kommen. Klingt bekannt, oder?
Wenn der Weg des Ableitens von Skills aus zukünftig unklaren/unsicheren Jobprofilen nicht wirklich nützlich ist, stellt sich die nächste Frage: Was können wir denn machen, um uns für die komplexe, turbulente Zukunft zu wappnen? Wir könnten beispielsweise mehr auf uns selbst schauen und die vielfältigen Potentiale “in uns” stärken, um vorbereitet zu sein auf zukünftige Entwicklungen, und um diese bewältigen zu können. Dazu habe ich folgenden aktuellen Text gefunden:
“Implicitly the question of future skills expects considerations on the challenges our jobs might have for us. Framing it this way results in optimising the existing skills we were trained for, projecting them into the future. There is not a straight highway leading to this unpredictable destination. We have to mobilise our navigating skills turning to futurizing detecting emergent issues in all aspects of life. Navigation is related to flowing with the rotation of the earth, which never is in static balance. To deal with unexpected multitudes of challenges we might look for the multitudes of talent, courage, insides, companionships, wisdom, contradictions and moods that at least basically each of us contains” (Edvinsson, L.; Szogs, A.; Szogs, G. M. (2024): Skill Is An Entity That Contains A: Cosmos, in Das Kuratierte Dossier vol. 6 „Future Skills KM“ March 2024 · published by: Gesellschaft für Wissensmanagement e. V.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Es ist unzweifelhaft, dass Künstliche Intelligenz (KI) unsere Arbeitswelt immer stärker beeinflussen/durchdringen wird – auch das Projektmanagement. In dem Beitrag Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI) wurde schon deutlich, dass Projektmanager einen Großteil ihrer praktischen Projektarbeit mit sozialen Interaktionsprozessen zu tun haben. Um diesen praktischen und den eher theoretischen Teil der Projektarbeit bewältigen zu können, sind entsprechende Kompetenzen erforderlich. In der Individual Competence Baseline (ICB 4.0) der International Project Management Association (IPMA) sind unter “People” persönliche und soziale Kompetenzen genannt.
“Dies ist der Kompetenzbereich der persönlichen und sozialen Kompetenzen (im englischen kurz ‚People‘ genannt). Die in diesem Kompetenzbereich differenziert aufgeführten Einzelkompetenzen (Selbstreflexion und Selbstmanagement, Persönliche Integrität und Verlässlichkeit, Persönliche Kommunikation, Beziehungen und Engagement, Führung, Teamarbeit, Konflikte und Krisen, Vielseitigkeit, Verhandlungen, Ergebnisorientierung) schätzt die IPMA® als notwendige „People-Skills“ eines Projektmanagers ein. Dem sozialen Miteinander wird also für den Projekterfolg ein hoher Stellenwert zugesprochen. Betrachtet man in diesem Kontext die Art und Weise, in der die Interaktionsmöglichkeiten von KI-Systemen auf Algorithmen beruhen, so wird das beschränkte Potenzial der KI bzgl. der People-Skills deutlich” (Barth/Sarstedt 2024).
Es wird auch hier wieder deutlich, dass die heutigen KI-Systeme bei großer sozialer Komplexität noch ihre Grenzen haben. Es geht im modernen Projektmanagement nicht nur um die jeweiligen Vorgehensmodelle (plangetrieben, hybrid, agil), sondern verstärkt um das angemessene Zusammenspiel der Dimensionen soziale Komplexität, Vorgehensmodell, KI-System.
Dabei taucht wieder “Kompetenz” als Schlüsselbegriff für die Bewältigung heutiger komplexer Arbeitssituationen auf. Ich tendiere hier – abweichend vom Kompetenzverständnis der ICB 4.0 – zu einem Kompetenzverständnis das Kompetenz als Selbstorganisationsdisposition beschreibt – und zwar auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk.
Der in der Überschrift angesprochene Souveränitätsscore basiert auf der Überlegung einer Digitalen Souveränität von Staaten, Unternehmen/Organisationen und einzelnen Personen. Dazu muss natürlich erst einmal geklärt werden, was unter Digitaler Souveränität zu verstehen ist.
„Digitale Souveränität beschreibt die Fähigkeiten und Möglichkeiten von Individuen und Institutionen, ihre Rolle(n) in der digitalen Welt selbstständig, selbstbestimmt und sicher ausüben zu können“ (Bundesministerium des Inneren (2020): Digitale Souveränität).
Daran anschließend sollten Kriterien festgelegt werden, anhand derer der Grad der Digitalen Souveränität bestimmt werden. Jäger, J. (2023) hat dazu Kriterien vorgeschlagen:
– Hat die Software eine Monopolstellung? – Nutzt die Software eine quelloffene Lizenz? – Werden offene, standardisierte Dateiformate unterstützt? – Nutzt die Software offene APIs/Schnittstellen? – Hat der Anbieter der Software seinen juristischen Hauptsitz in der EU? – Kann die Software im eigenen Rechenzentrum betrieben werden?
Prof. Wehnes hat auf Basis dieser Überlegungen einen Souveränitätsscore ermittelt, der auf der Website https://digital-sovereignty.net bestimmt werden kann. In der Abbildung weiter oben sehen Sie beispielhaft den Souveränitätsscore vonZoom: 0,2und den von BigBlueButton: 0,8.
Es ist deutlich zu erkennen, dass BigBlueButton die Anforderungen an die Digitale Souveränität erheblich besser erfüllt als Zoom.
Auf der genannten Website von Prof. Wehnes finden Sie noch weitere Vergleiche und ergänzende Informationen.
Wir nutzen auf unserer Kollaborationsplattform aus den ober erwähnten Gründen BigBlueButton und andere Open Source Anwendungen wie Moodle, Nextcloud, OpenProject, WordPress usw. – in Zukunft auch zusammen mit einer ethischen KI. Siehe dazu auch Künstliche Intelligenz: Vorteile von Open-Source-Modellen.
Künstliche Intelligenz (KI) bietet auf allen gesellschaftlichen Ebenen Anwendungsmöglichkeiten – auch im Projektmanagement. Dabei stellt sich die Frage, wie Künstliche Intelligenz (KI) bei verschiedenen Projekten eingesetzt werden kann. Barth/Sarstedt (2024) schlagen dazu in Anlehnung an Kuster (2022) vor, verschiedene Projektkategorien zu unterscheiden: Standardprojekte, Potenzialprojekte, Akzeptanzprojekte und Pionierprojekte.
“Für Potenzialprojekte ist die soziale Komplexität wiederum recht gering, jedoch sind die Projektziele und die zu beschreitenden Lösungswege zu Beginn des Projektes nur recht vage definiert. Als Beispiel können einfache Kunstprojekte oder die Entwicklung eines neuen Werkstoffs durch ein Expertenteam gelten. Die verschiedenen Ansätze und Lösungswege sind zu durchdenken und auszutesten. Eine KI kann hier systematisch vorgehen und durch Recherche von existierenden Daten eine auf der Vergangenheit basierende Lösung anbieten. Ein „Erspüren“ der Zukunft (das sogenannte Bauchgefühl) und die erfinderische Sicht in die Zukunft (den sogenannten „educated guess“) kann eine KI zum heutigen Zeitpunkt jedoch nur sehr bedingt bis gar nicht einbringen” (ebd).
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.
Die Taylor-Wanne thematisiert die Entwicklung von 1900 bis heute. Zunächst dominierte die Manufaktur, die individuelle Produkte dynamisch erstellen, und somit die Komplexität (Dynamik) der Kundenanforderungen abbilden konnte. Diese Organisationsform war allerdings wenig effizient.
Der Taylorismus mit seiner Arbeitsteilung auf allen Ebenen reduzierte die Dynamik (Komplexität), um die Effizienz bei der Herstellung von Produkten und Dienstleistungen zu erzielen. Dabei ist allerdings eine gewissen Trägheit entstanden ist, die zu einer geringen Anpassungsfähigkeit führt(e). Konventionelle Unternehmen arbeiten heute immer noch so.
Moderne Unternehmen/Organisationen sind vernetzt, dynamisch und passen sich den turbulenten Umfeld (VUCA oder BANI) an. Diese Art noch dynamisch-vernetze Unternehmen/Organisationen werden oft als Agile Organisationen bezeichnet. Diese Organisationen verbinden Effizienz und Dynamik mit Hilfe der Digitalisierung.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.
Künstliche Intelligenz (KI) bietet auf allen gesellschaftlichen Ebenen Anwendungsmöglichkeiten – auch im Projektmanagement. Dabei stellt sich die Frage, wie Künstliche Intelligenz (KI) bei verschiedenen Projekten eingesetzt werden kann. Barth/Sarstedt (2024) schlagen dazu in Anlehnung an Kuster (2022) vor, verschiedene Projektkategorien zu unterscheiden – eine davon kann die Kategorie “Standardprojekte” sein.
“Standardprojekte sind eine Projektkategorie, die sich durch eine eher geringe Soziale Komplexität, und eine relativ gute Bestimmbarkeit von Aufgabe und Lösungsweg auszeichnen. Künstliche Intelligenz kann bei solchen Projekten als “Agierende Einheit” (vgl. Barth/Sarstedt 2024) bezeichnet werden. Die Autoren meinen damit, dass die Künstliche Intelligenz im Extremfall Projektmanager bei Standardprojekten komplett ersetzen kann” (ebd.).
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Translate »
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.OK