Von “Märkte als Ziele” zu “Märkte als Foren”

Image by user32212 from Pixabay

Es wird in unterschiedlichen Zusammenhängen (Kontexten) immer wieder von “dem Markt” gesprochen/geschrieben, der das Ziel aller Unternehmensaktivitäten sein soll. Das hört sich an, als ob “der Markt” ein relativ homogenes “Gebilde” ist, doch “der Markt” ist sehr differenziert. Weiterhin sind die verschiedenen Akteure immer stärker vernetzt (technologisch, räumlich, zeitlich usw.) und haben Rückkopplungen untereinander. Ramaswar und Prahalad haben daher vorgeschlagen, “Märkte als Foren” zu sehen.

“Market is no longer a target, it is more a forum (Prahalad and Ramaswamy 2004) to “tap into the knowledge of participants in the social ecosystem to create a freer flow of information, engage people more wholeheartedly, and enable richer, fuller stakeholder interactions” (Ramaswamy and Gouillart 2010). Further, in such a complex system knowledge is unevenly distributed (Hayek 1945) and the direction of flows of knowledge and information cannot be predetermined (Ramaswamy and Ozcan 2014)” (Freund, R. 2017).

Es ist somit nicht, oder nur bedingt, möglich, Wissensflüsse in solchen Foren (Marktplätzen) gezielt vorauszusagen. In Unternehmen möchte man allerdings gerne, den Wissensfluss so organisieren, dass ein bestimmtes Ergebnis (meistens ein Gewinn für das Unternehmen) herauskommt. Die Schwierigkeiten so vorzugehen haben viele Unternehmen erkannt, und öffnen ihre Innovationsgrenzen. Diese Entwicklung hat Chesbrough als Open Innovation bezeichnet. Dabei bezieht er sich ausdrücklich auf Unternehmen mit ihrem Geschäftsmodell.

Betrachten wir allerdings die oben genannten Charakteristika von Foren und den damit verbundenen Wissensflüssen müssen Innovationen nicht zwangsläufig nicht nur von Unternehmen ausgehen, sondern können in der Vernetzung von allen möglichen Foren-Teilnehmern geschehen. Ein so verstandenes Open User Innovation wird von Eric von Hippel propagiert.

Solche Bottom-up-Innovationen tauchen allerdings immer noch nicht in den offiziellen Innovations-Statistiken auf. Es ist vorstellbar, dass diese Art von Innovationen mit Hilfe neuer Technologien (Künstliche Intelligenz, Additive Manufacturing, Open Source, Maker-Bewegung usw.) in Zukunft immer mehr an Bedeutung gewinnt. Unternehmen sollten diese Entwicklungen frühzeitig adaptieren.

Open Source AI: Nun gibt es endlich eine Definition – und damit interessante Erkenntnisse zu OpenAI und Co.

OpenAI ist mit ChatGPT etc. inzwischen weltweit erfolgreich am Markt. Angefangen hat das damalige Start-up mit der Idee, Künstliche Intelligenz (AI) als Anwendung offen, und damit frei verfügbar und transparent anzubieten. – ganz im Sinne der Open Source Idee.

Durch den Einstieg von Microsoft ist der Name OpenAI zwar geblieben, doch sind die Angebote in der Zwischenzeit eher als geschlossenes, intransparentes System einzuordnen, mit dem die Inhaber (Shareholder) exorbitante Gewinne erzielen möchten.

Dieser Problematik hat sich eine Personengruppe angenommen, und eine erste Definition für Open Source AI erarbeitet, anhand der die aktuellen KI-Apps bewertet werden können: In dem Artikel MIT Technology Review (2024): We finally have a definition for open-source AI (Massachusetts Institut of Technology, 22.08.224) findet sich dazu folgendes:

“According to the group, an open-source AI system can be used for any purpose without securing permission, and researchers should be able to inspect its components and study how the system works.

It should also be possible to modify the system for any purpose—including to change its output—and to share it with others to usewith or without modificationsfor any purpose. In addition, the standard attempts to define a level of transparency for a given model’s training data, source code, and weights.”

Die Intransparenz der Trainingsdaten bei den eher geschlossenen KI-Systemen von OpenAI, Meta und Google führt aktuell dazu, dass sich diese Unternehmen mit sehr vielen Klagen und Rechtstreitigkeiten auseinandersetzen müssen.

Die Open Source Initiative (OSI) plant, eine Art Mechanismus zu entwickeln, der bei den jeweiligen KI-Anwendungen anzeigt, ob es sich wirklich um Open Source KI-Anwendungen handelt

Interessant ist, dass dieser Gedanke bei Nextcloud mit seinem Ethical AI Ansatz schon vorweggenommen wurde.

Projektmanagement: KI-Unterstützung der ICB 4.0 Kompetenzen

Künstliche Intelligenz (KI) oder auch Artificial Intelligence (AI) ist mit seinen unglaublichen Möglichkeiten in aller Munde – natürlich auch im Projektmanagement. Ein guter Bezugspunkt für eine KI-Unterstützung im Projektmanagement kann die ICB 4.0 (Individual Competence Baseline 4.0) sein, die von der International Project Management Association (IPMA) zur Professionalisierung des Projekt-, Programm- und Portfoliomanagements veröffentlicht wurde. In der ICB 4.0 sind insgesamt 28 Kompetenzen definiert, die in drei Kategorien gegliedert sind. Jeder Kategorie kann durch KI unterstützt werden.

KategorieThemenKI-Unterstützung
Kontextuelle KompetenzenStrategie, Kultur, Werte etc.Einhaltung der Governance-Richtlinien
Persönliche und soziale KompetenzenPersönliche Integrität, Verlässlichkeit, Teamarbeit etc.Kommunikations-
verhalten einzelner Teammitglieder
Technische KompetenzenProjektplanung und Steuerung, Risikomanagement etc.Virtuelle KI-Assistenten
In Anlehnung an Schelter, N. (2024)

Grundsätzlich halte ich diese strukturierte KI-Unterstützung auf Basis der ICB 4.0 – Kompetenzen für sinnvoll. Dennoch möchte ich folgendes anmerken:

(1) Es handelt sich hier möglicherweise um ein mismatch von Begrifflichkeiten. Einerseits sprechen wir von Kompetenzen, andererseits von Künstlicher Intelligenz. Hier gibt es durchaus Unterschiede, die zu beachten sind. Siehe dazu beispielsweise Kompetenzen, Regeln, Intelligenz, Werte und Normen – Wie passt das alles zusammen?

(2) Als Leser unseres Blogs wissen Sie, dass ich eher das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk bevorzuge.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Die Reflexivität von Transaktionskosten und Innovationen am Beispiel von “Patient Innovation”

Screenshot von der Website https://patient-innovation.com

Wo kommt der Begriff “Transaktionskosten” überhaupt her? In meinem Blogbeitrag Brauchen wir Unternehmen? vom 15.12.2015 bin ich schon einmal darauf eingegangen, dass der Begriff auf Ronald Coase zurückgeht, der 1937 in seinem Artikel “The Nature of the Firm” erläuterte, warum wir Unternehmen benötigen. Die Antwort war schlüssig:

Die Transaktionskosten in Unternehmen waren eben günstiger als die Kosten, die außerhalb eines Unternehmens nötig waren, um eine Leistung zu erbringen. 

Dieser Ansatz hat sich auch Jahrzehnte als durchaus erfolgreich herausgestellt. Dabei kam den Unternehmen zugute, dass die Möglichkeiten der allgemeinen Digitalisierung in den Unternehmen und auch im Kundenkontakt intensiv genutzt wurden. Kunden können beispielsweise ihre Bankgeschäfte selbst durchführen, selbst online einchecken usw. Hinzu kommen noch die Möglichkeiten des 3D-Drucks (Additive Manufacturing) und jetzt auch noch der Künstlichen Intelligenz. Alles wurde und wird genutzt, um Transaktionskosten im Unternehmen stark zu reduzieren. Oftmals zugunsten einer besseren Gewinnmarge, weniger zum Nutzen ihrer Kunden.

Auf der anderen Seite merkt der Kunde oder User, dass er viele Transaktionen selbst durchführt und seine Bedürfnisse nicht wirklich von den Unternehmen befriedigt werden. Diese Kunden, Nutzer oder User erhalten also oftmals immer noch nicht den Value (Wert, Mehrwert), den alle seit den Zeiten von Marketing, Qualitätsmanagement, Innovationsmanagement und Agilem Projektmanagement etc. versprechen.

Was machen daher immer mehr User? Na ja, wenn sie schon vieles selbst machen sollen und die digitalen Tools sehr günstig zur Verfügung stehen (Open Source, 3D-Druck usw.) können sie ihre benötigten Dienstleistungen und Produkte auch gleich selbst designen, entwickeln und herstellen (User Innovation).

Ein Paradebeispiel für diese gesamte Entwicklung ist die Plattform Patient Innovation (Patienten-Innovation), deren Entwicklung ich auf den verschiedenen Weltkonferenzen verfolgen konnte. Die Initiative hat 2016 den Health Care Startup Award als Non-Profit Startup of the Year erhalten. Zunächst waren da medizinische Problemlösungen, von einzelnen Personen, da keine Lösungen (Dienstleistungen, Produkte) von Unternehmen angeboten wurden (Lohnt sich nicht / Break Even). Dann kamen die ersten eigenen Problemlösungen auf eine Plattform, die sich in der Zwischenzeit weltweiter Beliebtheit erfreut. Bitte schauen Sie sich auf der angegebenen Seite um.

Der Vorteil der immer stärker sinkenden Transaktionskosten in Unternehmen schlägt also auf die Unternehmen zurück – ist in diesem Sinne reflexiv. Ähnlich sieht es auch bei Innovationen aus. Künstliche Intelligenz mit ihren Möglichkeiten kann in Unternehmen für Innovationen genutzt werden, – und auch von einzelnen Usern, die für Ideen und Innovationen möglicherweise nicht immer Unternehmen mit den jeweiligen Strukturen benötigen. Eric von Hippel vom MIT hat das treffend “Democratizing Innovation” bzw. “Free Innovation” genannt. Siehe dazu auch

> Reflexive Modernisierung
> Von Democratizing Innovation zu Free Innovation
> Eric von Hippel (2017): Free Innovation
> 3D-Druck als reflexive Innovation?
> Freund, R.; Chatzopoulos, C.; Lalic, D. (2011): Reflexive Open Innovation in Central Europe. 4th International Conference for Entrepreneurship, Innovation, and Regional Development (ICEIRD2011), 05.-07. May

Multiple Intelligenzen nach Howard Gardner: Ist eine Intelligenz den anderen überlegen ?

Die von Howard Gardner veröffentlichte Theorie der Multiplen Intelligenzen geht von relativ unabhängigen Intelligenzen aus. Die Anzahl hat sich dabei in den letzten Jahren von 7 auf 9 erweitert. Es ist in diesem Zusammenhang wichtig, dass Howard Gardner den Intelligenz-Begriff beispielsweise im Vergleich zu dem oftmals vorherrschenden psychometrischen Intelligenzkonstrukt (Beispiel: Intelligenz-Quotient / IQ) entgrenzt/erweitert.

(…) the predictive value of IQ measures had been found to be poor in situations requiring production and evaluation of new ideas (Feldman 1980: 89-90).

Wenn es also verschiedene Multiple Intelligenzen gibt, so kann durchaus die Frage gestellt werden, ob nicht eine davon den anderen überlegen ist. Genau diese Frage hat Howard Gardner in dem englischsprachigen Blogbeitrag Are Some Intelligences Superior to Others? vom 11.04.2023 mit einem klaren NEIN beantwortet. Es kann zwar vorkommen, dass in einer Situation die eine oder andere Intelligenz dominiert, in einer anderen Situation aber wiederum nicht.

In einem speziellen beruflichen Umfeld (Kontext, Domäne) zeigen sich immer mehrere Intelligenzen.

In diesem Sinne hat man diese Multiplen Intelligenzen nicht, sondern sie zeigen sich in intelligenten (komplexen) Problemlösungen.

In diesem Zusammenhang musss ich auch die Frage stellen, ob die Künstliche Intelligenz der Menschlichen Intelligenz, oder die Menschliche Intelligenz der Künstlichen Intelligenz überlegen ist. Dieses Thema werde ich in einem der folgenden Blogbeiträge (versuchen zu) beantworten.

Machen Sie einen KI-Fachckeck (KI-Readiness)

Auszug auf den Fachcheck ( Mittelstand-Digital Zentrum Chemnitz)

Das Mittelstand-Digital Zentrum Chemnitz hat eine übersichtliche Möglichkeit entwickelt, in einem Fachcheck die KI-Readiness einer Organisation zu bestimmen, zu visualisieren.

“Der Fachcheck KI-Readiness hilft Unternehmen dabei, ihren KI-Reifegrad zu ermitteln. Mit dem Wissen über den eigenen Status qou können Unternehmen weitere Maßnahmen ergreifen, um die Potenziale von künstlicher Intelligenz für sich zu nutzen” (ebd.).

In dem Selbstcheck werden Fragen zu den Bereichen Strategie und Planung, Daten und Technologie und Ethik, Compliance, Sicherheit gestellt, und jeweils der Reifegrad von 0 (Beobachter) bis 4 (Experte) beurteilt (siehe Abbildung oben). Die folgende Abbildung zeigt dazu beispielhaft eine Auswertung.

Beispielauswertung (fiktive Angaben)

Es ist insgesamt eine einfache, kostenfreie und auf KMU (Kleine und mittlere Unternehmen) abgestimmte erste “Analyse”.

An dieser Stelle möchte ich anmerken, dass es gut wäre, auch einen Check zu Menschlicher Intelligenz in Unternehmen zu haben…

Auf solche Themen gehen wir auch in den von uns entwickelten Blended Learning Lehrgängen ein, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.

Emotionale Intelligenz und Emotionale Kompetenz

mage by StockSnap from Pixabay

Viele kennen den Begriff der Emotionalen Intelligenz, den Goleman populär gemacht hat. Ursprünglich kam der Begriff allerdings von Mayer,/Salovay, die sich ausdrücklich auf Gardner´s Multiple Intelligenzen Theorie bezogen haben

Dabei stellt sich natürlich auch die Frage, was Emotionale Intelligenz von Emotionaler Kompetenz unterscheidet. In dem Blogbeitrag Kompetenz und Intelligenz – eine Gegenüberstellung wird der Unterschied deutlich, Dazu habe ich folgendes gefunden:

Emotionale Kompetenz meint die Fähigkeit, sich selbst in einem tieferen Sinne zu verstehen. In unserem emotionalen Ich drückt sich aus, wie wir gelernt haben, die Welt auszuhalten, bevor wir sie deuten und interpretieren. Wer emotional selbstreflexiv zu handeln versteht, hat tief durchdrungen, dass er sein Gegenüber nicht so zu sehen vermag, wie es ist, sondern nur so, wie er selbst gelernt hat, es zu spüren. Er fragt sich, was dieses ihm selbst über sich in Erinnerung ruft, und ist sich der Tatsache bewusst, dass die aderen nicht dafür verantwortlich sind, wie wir sie zu spüren vermögen. Der emotional kompetente Mensch ist in der Lage, sich den anderen mit seinen eigenen Gefühlen und Gewissheiten nicht  einfach zuzumuten, sondern den Ausdruck des Gegenübers immer wieder neu zu erspüren” (Arnold 2017).

Die These, dass es im Sinne der Multiplen Intelligenzen Theorie (Gardner) auch Multiple Kompetenzen geben sollte, die auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk zu beachten sind, habe ich in meiner Veröffentlichung weiter ausgeführt:

Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Kooperation und Kollaboration: Welche Unterschiede gibt es?

Das Umfeld von Organisationen wird immer turbulenter und vernetzter. Durch Technologien wie die Digitalisierung (Künstliche Intelligenz) ergeben sich sozio-technische Systeme, die mehr Kollaboration erfordern. Siehe dazu auch Digitalisierung und die Wiederentdeckung soziotechnischer Ansätze. Dabei sollte Kollaboration von Kooperation abgegrenzt werden. Die folgende Tabelle zeigt einige wichtige Unterschiede der beiden Begriffe auf.

KooperationKollaboration
Ziel“Einer gibt vor”“Wird gemeinsam definiert”
ModusHierarchie/MarktVertrauen
Leitmotiv“ja nicht zu viel machen”“gemeinsam mehr erzeugen”
Quelle: Ziegler/Heidling (2022); Impulse aus dem BMBF-Projekt HyValue

Gerade der Modus “Vertrauen” ist schwer umzusetzen, da in den klassischen Organisationen eher der Slogan “Vertrauen ist gut, Kontrolle ist besser” stark im Mindset verankert ist. Hervorgehoben wird von den beiden Autoren, daher dass “Kollaboration im Wertschöpfungssystem eine sozialwissenschaftliche Perspektive” bedarf. Das liegt wohl auch daran, dass die Sozialwissenschaften die auftretende Soziale Komplexität gut beschreiben können. Es wundert somit nicht, dass Führung heute sozialwissenschaftliche Expertise benötigt.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.

Der Begriff der “Spekulation” im alltäglichen Sprachgebrauch und in anderen Kontexten

Wenn jemand etwas nicht genau weiß, und dennoch eine Schlussfolgerung ableitet, wird oft gesagt, hier wird spekuliert. In der Finanzwelt werden beispielsweise von Spekulanten riesige Geldmengen bewegt. Es wird deutlich, dass das Konstrukt “Spekulation” im alltäglichen Sprachverständnis negativ besetzt, allerdings in manchen Branchen (Kontexten, Domänen) ein durchaus gängiger Begriff ist.

“Der Begriff Spekulation wird im Gegensatz zum alltäglichen Sprachverständnis in der Wirtschaftswissenschaft wertneutral verwendet” (Wikipedia). 

Der Begriff des Spekulativen sollte daher auch umgangssprachlich gar nicht mehr so despektierlich gesehen werden – wie auch der folgende Text hervorhebt:

“Als philosophischer Fachterminus meint das Spekulative seit Kant und Hegel den eigentlichen Gebrauch der Vernunft, ohne in der bloßen Erfahrung des Vorliegenden steckenzubleiben. Daher ist das spekulative Element, methodisch zielführend eingebettet, ein wesentlicher Bestandteil des Entwerfens, den zu Unrecht eine unwissenschaftliche Aura umgibt (Groß und Mandir 2022, S. 30)” (Sander/Glaser/König (2024), in: Ebert/Rahn/Rodatz (Hrsg.) (2024): Wie gestalten wir Gesellschaft?).

In diesem Sinne lassen Sie uns ruhig spekulieren, und über die besten Meinungen diskutieren, debattieren und im positiven Sinne streiten..

Kostenfreie KI-Tools in den Projektmanagement-Phasen ausprobieren

Natürlich kann und sollte Künstliche Intelligenz in Organisationen genutzt werden, Siehe dazu auch Arbeit 4.0: Chancen, die sich aus den neuen technischen Möglichkeiten ergeben.

Speziell im Projektmanagement gibt es viele Möglichkeiten, Künstliche Intelligenz einzusetzen., Siehe dazu beispielsweise Künstliche Intelligenz (KI) im Projektmanagement: Routine und Projektarbeit. Betrachten wir das klassische plangetriebene Projektmanagement, so gibt es hier verschiedene Phasenmodelle, an denen man sich orientieren kann. In der DIN 69901 wird beispielsweise vorgeschlagen, die Phasen Initiierung, Definition, Planung, Steuerung und Abschluss zu unterscheiden.

Im einfachsten Fall würde eine Organisation ChatGPT als kostenpflichtige Anwendung in allen Phasen nutzen. Viele Organisationen fragen sich allerdings, ob es nicht möglich ist, kostenfreie KI-Tools auszuprobieren, die möglicherweise spezifischer (besser?) sind. In einem Artikel von Haltmeyer/Lenz wird genau diese Frage thematisiert. Die Autoren machen dazu erste Vorschläge, die in der Abbildung zusammengefasst sind. Ziel bei der Auswahl ist es, dass die Nutzer in den kostenfreien Versionen ausprobieren, ob es Sinn macht, die kostenpflichtige Variante zu nutzen – oder eben nicht. Es kann auch sein, dass Open-Source-Modelle beim Einsatz von Künstlicher Intelligenz infrage kommen.

Mit Hilfe dieser ersten Überlegungen kann eine Organisation weitere kostenfreie KI-Tools sammeln und ausprobieren, um so nach und nach einen organisationsspezifischen Mix an sinnvollen KI-Tools im Projektmanagement aufzubauen.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.