Souveränitätsscore: Zoom und BigBlueButton im Vergleich

Quelle: Prof. Wehnes https://digital-sovereignty.net/page-rating/video-conferencing
(Eigene farbige Hervorhebung)

Der in der Überschrift angesprochene Souveränitätsscore basiert auf der Überlegung einer Digitalen Souveränität von Staaten, Unternehmen/Organisationen und einzelnen Personen. Dazu muss natürlich erst einmal geklärt werden, was unter Digitaler Souveränität zu verstehen ist.

Digitale Souveränität beschreibt die Fähigkeiten und Möglichkeiten von Individuen und Institutionen, ihre Rolle(n) in der digitalen Welt selbstständig, selbstbestimmt und sicher ausüben zu können“ (Bundesministerium des Inneren (2020): Digitale Souveränität).

Daran anschließend sollten Kriterien festgelegt werden, anhand derer der Grad der Digitalen Souveränität bestimmt werden. Jäger, J. (2023) hat dazu Kriterien vorgeschlagen:

– Hat die Software eine Monopolstellung?
– Nutzt die Software eine quelloffene Lizenz?
– Werden offene, standardisierte Dateiformate unterstützt?
– Nutzt die Software offene APIs/Schnittstellen?
– Hat der Anbieter der Software seinen juristischen Hauptsitz in der EU?
– Kann die Software im eigenen Rechenzentrum betrieben werden?

Prof. Wehnes hat auf Basis dieser Überlegungen einen Souveränitätsscore ermittelt, der auf der Website https://digital-sovereignty.net bestimmt werden kann. In der Abbildung weiter oben sehen Sie beispielhaft den Souveränitätsscore von Zoom: 0,2 und den von BigBlueButton: 0,8.

Es ist deutlich zu erkennen, dass BigBlueButton die Anforderungen an die Digitale Souveränität erheblich besser erfüllt als Zoom.

Auf der genannten Website von Prof. Wehnes finden Sie noch weitere Vergleiche und ergänzende Informationen.

Wir nutzen auf unserer Kollaborationsplattform aus den ober erwähnten Gründen BigBlueButton und andere Open Source Anwendungen wie Moodle, Nextcloud, OpenProject, WordPress usw. – in Zukunft auch zusammen mit einer ethischen KI. Siehe dazu auch Künstliche Intelligenz: Vorteile von Open-Source-Modellen.


Künstliche Intelligenz bei Potenzialprojekten

Künstliche Intelligenz (KI) bietet auf allen gesellschaftlichen Ebenen Anwendungsmöglichkeiten – auch im Projektmanagement. Dabei stellt sich die Frage, wie Künstliche Intelligenz (KI) bei verschiedenen Projekten eingesetzt werden kann. Barth/Sarstedt (2024) schlagen dazu in Anlehnung an Kuster (2022) vor, verschiedene Projektkategorien zu unterscheiden: Standardprojekte, Potenzialprojekte, Akzeptanzprojekte und Pionierprojekte.

Für Potenzialprojekte ist die soziale Komplexität wiederum recht gering, jedoch sind die Projektziele und die zu beschreitenden Lösungswege zu Beginn des Projektes nur recht vage definiert. Als Beispiel können einfache Kunstprojekte oder die Entwicklung eines neuen Werkstoffs durch ein Expertenteam gelten. Die verschiedenen Ansätze und Lösungswege sind zu durchdenken und auszutesten. Eine KI kann hier systematisch vorgehen und durch Recherche von existierenden Daten eine auf der Vergangenheit basierende Lösung anbieten. Ein „Erspüren“ der Zukunft (das sogenannte Bauchgefühl) und die erfinderische Sicht in die Zukunft (den sogenannten „educated guess“) kann eine KI zum heutigen Zeitpunkt jedoch nur sehr bedingt bis gar nicht einbringen” (ebd).

Auch in dem Beitrag Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte wird deutlich, um welche Aufgaben es dabei geht. Siehe dazu auch Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI).

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Informationen zu unseren Blended Learning Lehrgängen und zu aktuellen Terminen finden Sie auf unserer Lernplattform.

Von der Taylor-Wanne zur VUCA-Wanne?

Eigene Darstellung in Anlehnung an Wohland/Wiemeyer (2012)

Die Taylor-Wanne thematisiert die Entwicklung von 1900 bis heute. Zunächst dominierte die Manufaktur, die individuelle Produkte dynamisch erstellen, und somit die Komplexität (Dynamik) der Kundenanforderungen abbilden konnte. Diese Organisationsform war allerdings wenig effizient.

Der Taylorismus mit seiner Arbeitsteilung auf allen Ebenen reduzierte die Dynamik (Komplexität), um die Effizienz bei der Herstellung von Produkten und Dienstleistungen zu erzielen. Dabei ist allerdings eine gewissen Trägheit entstanden ist, die zu einer geringen Anpassungsfähigkeit führt(e). Konventionelle Unternehmen arbeiten heute immer noch so.

Moderne Unternehmen/Organisationen sind vernetzt, dynamisch und passen sich den turbulenten Umfeld (VUCA oder BANI) an. Diese Art noch dynamisch-vernetze Unternehmen/Organisationen werden oft als Agile Organisationen bezeichnet. Diese Organisationen verbinden Effizienz und Dynamik mit Hilfe der Digitalisierung.

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in AGIL (IHK). Informationen dazu, und zu aktuellen Terminen, finden Sie auf unserer Lernplattform.

Künstliche Intelligenz bei Standardprojekten

Künstliche Intelligenz (KI) bietet auf allen gesellschaftlichen Ebenen Anwendungsmöglichkeiten – auch im Projektmanagement. Dabei stellt sich die Frage, wie Künstliche Intelligenz (KI) bei verschiedenen Projekten eingesetzt werden kann. Barth/Sarstedt (2024) schlagen dazu in Anlehnung an Kuster (2022) vor, verschiedene Projektkategorien zu unterscheiden – eine davon kann die Kategorie “Standardprojekte” sein.

Standardprojekte sind eine Projektkategorie, die sich durch eine eher geringe Soziale Komplexität, und eine relativ gute Bestimmbarkeit von Aufgabe und Lösungsweg auszeichnen. Künstliche Intelligenz kann bei solchen Projekten als “Agierende Einheit” (vgl. Barth/Sarstedt 2024) bezeichnet werden. Die Autoren meinen damit, dass die Künstliche Intelligenz im Extremfall Projektmanager bei Standardprojekten komplett ersetzen kann” (ebd.).

Auch in dem Beitrag Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte wird deutlich, um welche Aufgaben es dabei geht. Siehe dazu auch Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI).

Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen, die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.

Kohärenzwissen als neue Wissensform

Die Entgrenzung des Wissens führt zu einem neuen Wissensbegriff und zu neuen Wissensformen, zu denen auch das “Google-Wissen” zählt. Darüber hinaus gibt es noch eine Wissensform, die sich eher in der Expertise zeigt, und sich daher von dem Google-Wissen unterscheidet.

“Dieses etabliert sich über seine Verankerung in überlieferten Wissensformen. Das Kohärenzwissen ist ein anknüpfendes Wissen. Es lebt von den vielfältigen Erklärungsversuchen, mit denen es sich vergleicht, denen es sich anschließt oder über die es hinausführt. Grundlegend ist die Vielfalt der Perspektiven, welche in dieses Wissen integriert sind und auch unauflösbare Widersprüche beinhaltet, die aufzulösen bislang nicht gelungen ist. Das Kohärenzwissen ist der Hort der Expertise. Es tritt in Fachbüchern, Lexika und Ausbildungs- oder Studienunterlagen zutage und ist dem Selbstlernen zugänglich. Um jedoch den Umgang mit Wiedersprüchen, Unsicherheiten oder gar Fehlern zu lernen, lohnt es sich Expertinnen und Experten bei solchem Umgang  zu beobachten und mit ihnen in Kontakt zu treten. Diese Begegnungen haben wenig mit Unterricht, viel aber mit Interaktion, Nachfrage und Begleitung zu tun” (Arnold 2017; Eigene Hervorhebungen).

Es ist in der heutigen Zeit wichtig, den Wissensbegriff, weitere Wissensformen und den jeweiligen Umgang mit den neuen Wissensformen zu thematisieren, denn letztendlich wird sich aus diesen Betrachtungen auch ein neues Wissensmanagement ableiten.

Der “reflexible Mensch” und der Umgang mit Wissen

In den vergangenen Jahrzehnten der Industriegesellschaft wurde es zunächst immer wichtiger flexibel zu sein (Der flexible Mensch), um sich den Veränderungen im Umfeld anzupassen. Der Strukturbruch zwischen Einfacher und Reflexiver Modernisierung hat gezeigt, dass Flexibilität nicht ausreicht, um das turbulente Umfeld zu bewältigen. Bei der Reflexiven Modernisierung geht es um Kontingenzzuwachs, um die Nebenfolgen sozialen Handelns, und um die Krise der Realitätsunterstellungen und Rationalisierbarkeitserwartungen. Der reflexive Mensch muss daher auch sein Verständnis von Lernen und Wissen den neuen Gegebenheiten anpassen. In Arnold, R. (2017) geht man noch einen Schritt weiter und verbindet den flexiblen Menschen und den reflexiven Menschen zum reflexiblen Menschen.

Der reflexible Mensch lernt dabei nicht nur „etwas“, sondern erweitert seine persönlichen Fähigkeiten
– zur Erschließung von Wissensquellen,
– zum Umgang mit Neuem,
– zur Planung und Gestaltung eigener Lernprojekte,
– sowie zur Veränderung vertrauter Sichtweisen und Routinen” (ebd.).

Dabei spielen die neuen technologischen Möglichkeiten wie z.B. Künstliche Intelligenz eine bedeutende Rolle, da sie ganz neue Lernmöglichkeiten und Wissenskonstruktionen ermöglichen.

Projektmanager: Soziale Interaktionsprozesse und ihre Bedeutung für den Einsatz von Künstlicher Intelligenz (KI)

AdobeStock_527653115

Die Rolle eines Projektmanagers, einer Projektmanagerin, ist vielschichtig. In der Theorie gibt es viele Themen die abgedeckt werden sollen. Dazu zählen planerische, kontrollierende und steuernde Tätigkeiten, Kommunikation und Organisation. Darüber hinaus gehören auch Führungsaufgaben, Weisungen und Entscheidungen zum Arbeitsfeld. Zu all den genannten Punkten gibt es in der Literatur viele Hinweise zur möglichen Umsetzung, doch kommen in der Praxis viele soziale Interaktionen hinzu.

Eigene Darstellung – Quelle: Barth/Sarstedt (2024)

“Ohne soziales Miteinander und soziale Interaktionsprozesse ist kein Projekt zielführend zum Abschluss zu bringen. Der Begriff sozial ist aus dem lat. „sozialis“ abgeleitet, was so viel wie gesellschaftlich, gemeinnützig bzw. hilfsbereit bedeuten kann. Die soziale Interaktion sollte demnach auch innerhalb von einem Projekt von gemeinschaftlichem und sich unterstützendem Handeln geprägt sein” (Barth/Sarstedt 2024).

Betrachten wir die Prozesse in der Realität (Abbildung) so wird deutlich, dass neben den technischen auch viele sozialen Interaktionsprozesse für den Erfolg von Projekten nötig sind. Beispielsweise zählen kognitive und menschliche Sensorik zu einzusetzen, Mensch zu sein (z.B. Emotionen zu zeigen) oder auch Verantwortung zu tragen. zu den jeweiligen Punkten sind in der Abbildung weitere Unterpunkte genannt, auf die ich hier nicht weiter eingehen möchte.

Die gesamten sozialen Interaktionsprozesse können durch “kognitive Empathie und Fingerspitzengefühl” (ebd.) erschlossen werden. An dieser Stelle führt das zu der Frage, inwieweit Künstliche Intelligenz (KI) solche Bereiche abdecken kann. Aktuelle sieht es so aus, dass der Nutzen von Künstlicher Intelligenz (KI) zunächst auf den Punkten liegt, die auf der Seite “Theorie” stehen. Auf der Seite “Praxis” stehen allerdings viele Punkte, die von Künstlicher Intelligenz (aktuell noch) nicht abgedeckt werden. Es wird als Projektmanager daher darauf ankommen, beide Potentiale für das Projektmanagement sinnvoll und angemessen zu nutzen. Siehe dazu auch Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.

Informationen zu den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten, finden Sie auf unserer Lernplattform.

Künstliche Intelligenz: Vorteile von Open-Source-Modellen

Was als Open-Source begann, wird oft zu einem wirtschaftlich getriebenen Closed-Source-Modell. Das Beispiel OpenAI zeigt, wie das funktioniert. Zunächst war OpenAI Open-Source basiert und wurde dann unter dem Einfluss und dem Kapital von Microsoft Schritt für Schritt zu einem Closed-Source KI-System, das sich der Konzern gut bezahlen lässt. Es ist zu vermuten, dass dieser Weg auch von anderen Konzernen beschritten wird, sobald sich die Anwender an die zunächst freien Funktionen gewöhnt haben, wodurch sich deren Switching-Cost pro Anwender erhöhen. Diese Entwicklung wird allerdings in dem aktuellen EFI Gutachten (2024) kritisch gesehen, und hervorgehoben, welche Vorteile Open-Source KI-Modelle haben:

“Open-Source-Modelle können den Wettbewerb stärken und bieten mehr Innovationsmöglichkeiten als Closed-Source-Modelle, da sie in der Regel besser anpassbar sind. Zudem können Akteure aus Wissenschaft und Wirtschaft, insbesondere Startups und KMU, von den verhältnismäßig niedrigen Kosten der Open-Source-Nutzung profitieren und
vorhandene Open-Source-Modelle einsetzen, um domänenspezifisch zu innovieren und die Produktivität zu steigern. Dies erhöht den Wettbewerb und die Angebotsvielfalt und beugt somit Monopolisierungstendenzen vor. Darüber hinaus haben Open-Source-Modelle den Vorteil, dass Programmierfehler oder potenzielle Verzerrungen, die bei der Analyse von Daten entstehen, schneller identifiziert und behoben werden können. Dies ist der Transparenz und Zuverlässigkeit von KI-Modellen förderlich” (EFI Gutachten 2024:88).

Jede Organisation sollte sich genau überlegen, welche KI-Strategie geeignet ist, mittel- und langfristig die Chancen von KI-Modellen zu nutzen. Wir nutzen Open-Source-KI-Modelle in unserer Nextcloud und entwickeln dadurch eine KI-Strategie, die zu unseren Anforderungen passt. Wie weit wir Closed-Source KI-Modelle mit integrieren, entscheiden wir je nach Bedarf mit Hilfe des integrierten Ethical KI-Rankings.

Ein neuer Wissensbegriff

Der Begriff “Wissen” hat sich n der Vergangenheit immer wieder verändert, und wird dies auch in Zukunft tun. In dem Beitrag Vom Wissen als Besitz zum Wissen als Prozess wird diese Transformation deutlich. Zusammen mit den neuen Technologien, wie das WWW oder auch Künstliche Intelligenz, entsteht ein neuer Wissensbegriff.

„Wissen begründet sich in der gegenwärtigen Gesellschaft in dem Zusammenspiel vieler Wissensfragmente, die unter anderem im world wide web (www) technisch zusammengeführt werden und dort als gemeinsam verfügbares Wissen auftauchen, das durch Prozesse der Wissensbegründung in einer Erfahrungsgemeinschaft konstituiert wird. Dieser Wissensbegriff ist neu (vgl. Neusser 2013, zitiert in Arnold 2017:88).

Diese Entwicklung wirft zugleich Fragen zum Umgang mit diesem neuen Wissensbegriff auf. Welche Herausforderungen ergeben sich daraus für ein modernes Wissensmanagement?

Künstliche Intelligenz – Menschliche Intelligenz – Intelligente Problemlösungen

In der heute sehr stark vernetzten Welt kommt es darauf an, Muster zu erkennen, um die anstehenden komplexen Problemlösungen zu entwickeln. die neuen Fragestellungen können oftmals nicht mehr mit den bisher so erfolgreichen Denkmustern gelöst werden. Das immer wieder propagierte neue Mindset integriert die alten Denkmuster und entwickelt diese weiter. Ein zentraler Punkt in vielfältig vernetzten Systemen ist das Erkennen von schwachen Signalen, oder von Mustern. Diese Eigenschaften werden der Künstlichen Intelligenz und der Menschlichen Intelligenz zugeschrieben. Im Zusammenspiel können dabei viele intelligente Problemlösungen generiert werden.

“Eine der zentralen Fragen der Zukunft könnte nicht sein, wie viele künstliche intelligente Lösungen in den Systemen stecken, sondern wie viel menschliche Intelligenz und welches Mindset und Bewusstsein vor dem Computer sitzt und wie beide miteinander in Beziehung stehen und verbunden sind” (Linder-Hofmann (2024): KI, agiles Mindset und integral -systemische Perspektiven. In: Bernert/Scheurer/Wehnes (Hrsg.): KI in der Projektwirtschaft).

Die Mustererkennung kann durch Maschinen wie der Künstlichen Intelligenz, oder durch den Menschen mit seinen besonderen Intelligenzen/Kompetenzen erfolgen. An dieser Stelle sollte allerdings auch geklärt werden, welche menschliche Intelligenz gemeint ist. Es gibt hier durchaus Ansätze die zeigen, das möglicherweise der immer noch favorisierte Intelligenz-Quotient (IQ) keine Passung zu dem hier kurz aufgezeigten Themenfeld hat. Siehe dazu auch
Künstliche Intelligenz und Menschliche Intelligenz
Intelligenztheorie: Anmerkungen zu Sternbergs Triarchischen Theorie und Gardners Multiple Intelligenzen Theorie
Mensch und Künstliche Intelligenz: Engineering bottlenecks und die fehlende Mitte.