Welche Einflussfaktoren wirken auf den Erfolg von Netzwerken?

Image by OpenClipart-Vectors from Pixabay

Um den Erfolg von Netzwerken sicher zu stellen, ist die Aufdeckung relevanter Einflussfaktoren bedeutsam. In der Literatur werden folgende Faktoren diskutiert (Denison/Grohmann 2009:431):

Vertrauen zwischen den Mitgliedern: Vertrauen wird sowohl im Bezug auf Netzwerke sowie auf Networking durchgängig als bedeutendes Merkmal bzw. als Basis der Beziehungen genannt (Baker, 1994; Elsholz & Meyer-Menk, 2002; Hanft, 1997; Uzzi, 1997). Vertrauen erleichtert es, Wissen zu teilen und kooperieren (Meyerson, Weick & Kramer, 1996).

Reziprozität (Gegenseitigkeit): Für Kooperationen in Netzwerken ist es ebenfalls von Bedeutung, dass der Austauschprozess zwischen den Partnern als angemessen und ausgewogen wahrgenommen wird (Elsholz & Meyer-Menk, 2002; Hanft, 1997).

Homogenität der Mitglieder innerhalb des Netzwerks: Die Homogenität bzw. Heterogenität der Netzwerke wird kontrovers diskutiert. Ergebnisse zeigen einerseits, dass bessere Lernerfolge in heterogen zusammengesetzten Netzwerken erzielt werden (Wilkesmann, 1999). Andererseits können in Netzwerken auf Grund der Austauschorientierung auch Vorteile homogen gestalteter Netzwerke erwartet werden (Ibarra, 1993).

Unterstützung der Mitglieder untereinander: Netzwerke können für die Teilnehmer eine Unterstützungsfunktion bieten, da sie Personen mit ähnlichen Arbeitsbedingungen und vergleichbaren Problemen zusammenbringen, die sich im Rahmen der Netzwerke auch über belastende Aspekte austauschen können (Jütte, 2002).

Commitment zum Netzwerk: Die Entwicklung einer gemeinsamen Identität gilt als Erfolgsfaktor für Netzwerke (Diettrich & Gillen, 2004). Durch ein hohes Commitment in einem Netzwerk, also die Identifikation mit der Gruppe, wird der Austausch zwischen den Netzwerkmitgliedern erleichtert (vgl. Nahapiet & Ghoshal, 1998).

Weitere Rahmenbedingungen: Als weitere Erfolgsfaktoren gelten die optimale Größe von Netzwerken und die Stabilität von Netzwerken. Je nach Zweck des Netzwerks wird bei eher ökonomisch orientierten Netzwerken eine optimale Größe von 10-50 Akteuren angegeben (Borkenhagen, Jäkel, Kummer, Megerle & Vollmer, 2004). Stabile Teilnehmergruppen, insbesondere ein stabiler Kern, gelten als bedeutsamer Aspekt für erfolgreiche Netzwerke (Diettrich & Gillen, 2004). Gerade der Personenwechsel kann lernen negativ beeinflussen (Wilkesmann, 1999).

Warum gibt es kein deutsches Verb für Kompetenz?

Der Begriff “Kompetenz” ist sehr vielschichtig und verfügt wegen seiner geschichtlichen Entwicklung über viele Facetten. Eine davon ist, Kompetenz als Selbstorganisationsdisposition zu verstehen, die sich von Persönlichkeitseigenschaften und -fertigkeiten unterscheidet.

Ein weiterer, wichtiger Begriff ist in dem Zusammenhang ist “Qualifikation”. Qualifikationen sind hier Fertigkeiten, Fähigkeiten und Kenntnisse, die vermittelt und geprüft werden können. Qualifikationen sind eher für die Bewältigung überschaubarer Aufgaben geeignet. Daran schließen sich bereichsübergreifende Schlüsselqualifikationen an. In eher unsicheren/unübersichtlichen Problemlösungssettings reichen Qualifikationen zu deren Bewältigung nicht mehr aus. Da es in der heute stark vernetzten Welt immer mehr um komplexes Problemlösen geht, ist es nicht verwunderlich, dass die Kompetenzentwicklung auf pädagogischer Ebene und auf Unternehmensebene in den Mittelpunkt rückt.

Der ethisches Aspekt bedingt, dass dass Kompetenz nicht gelehrt und vermittelt, sondern nur angebahnt werden kann. Der sich Bildende ist bei der Entwicklung dieser umfassenden Fähigkeiten als Akteur gefragt (Heil 2007:72). Als einen Hinweis darauf, dass Kompetenz sich entwickelt und nicht vermittelt werde kann, kann die Tatsache gesehen werden, dass es kein deutsches Verb für Kompetenz gibt. Einen Menschen kann man qualifizieren aber nicht “kompetenzieren” (ebd. S. 75, in Heffels/Streffer/Häusler (2007).

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Was macht ein komplexes System aus?

In Verbindung mit Arbeit 1.0-4.0 – oder auch im Projektmanagement usw. – wird häufig von komplexen Systemen gesprochen/geschrieben. Doch, was macht ein komplexes System aus?

First of all we have to discuss what we understand by complex systems. In a naive way, we may describe them as systems which are composed of many parts, or elements, or components which may be the same or of different kinds. The components or parts may be connected in a more or less complicated fashion (Haken 2006:1) (…) Systems may not only be complex as a result of being composed of so many parts but we may also speak of complex behaviour. The various manifestations of human behaviour may be very complex as is studied e.g. in psychology (ebd. p. 3) (…) An important step in treating complex systems consists in establishing relations between various macroscopic quantities. These relations are a consequence of microscopic events which, however, are often unknown or only partially known (ebd. p. 7).

Solche gänzlich unbekannten, oder teilweise unbekannten Beziehungen machen also ein System zu einem komplexen System. Doch wie kann eine Organisation, ein Team, oder auch jeder Einzelne mit etwas umgehen, das teilweise oder völlig unbekannt ist? Es scheint zunächst einmal deutlich zu werden, dass der Umgang mit offensichtlich vorhandenen Daten und Informationen nicht ausreicht. Beim Umgang mit komplexen Systemen kommt neben neuen technologischen Möglichkeiten noch hinzu, dass es Menschen braucht, die mit ihren vielfältigen Potenzialen solche Situationen bewältigen können. Siehe dazu auch Umgang mit Unschärfe und Unsicherheit, oder Erstens kommt es anders, zweitens als man denkt.

Komplexe Fähigkeiten durch das Meister-Lehrling-Prinzip (Apprenticeship) entwickeln

Image by Free-Photos from Pixabay

Es ist schon erstaunlich, wie lange sich das industriell geprägte Bildungssystem mir der damit verbundenen Bildungsindustrie noch hält, obwohl sich die Rahmenbedingungen für das zugegebenermaßen große Erfolgsmodell des vergangenen Jahrhunderts erheblich verändert haben.

Durch die Vernetzung von allem gibt es immer mehr komplexe Problemlösungssituationen in einer eher wissensbasierten Arbeitswelt. Dabei sind Fähigkeiten (Kompetenzen) erforderlich, die in klassischen, formalen Lehr- und Lernstrukturen kaum zu entwickeln sind. Ein Ansatz, der schon in der Vergangenheit erfolgreich verfolgt wurde: das Meister-Lehrling-Prinzip.

Erst im 19. Jahrhundert, und auch da nur in den Industrienationen, entwickelte sich ein formales Schulsystem als zentrales Bildungssystem für junge Menschen. Bevor sich die Schulen etabliert hatten, war die Lehre mit dem Meister-Lehrling-Prinzip (Apprenticeship) das verbreitetste lehr-Lern-System. Sogar heutzutage werden noch viele komplexe und wichtige Fähigkeiten – etwa die, die für Sprachgebrauch und soziale Interaktion benötigt werden – informell durch apprenticeship-ähnliche Methoden gelehrt. Darunter werden Methoden verstanden, die keine didaktischen Lehrbemühungen enthalten, sondern stattdessen auf Beobachtung, Coaching und schrittweise Annäherung an den Zielzustand vertrauen (Collins 2004:112).

Diese Art der Kompetenzentwicklung im Prozess der Arbeit kann z.B. durch Pair Programming, Tandem-Lernen oder anderen Methoden unterstützt werden. Interessant an der Beschreibung von Collins ist, das die Beteiligten dabei auf die “schrittweise Annäherung an den Zielzustand vertrauen” sollen. Hier wird die Verbindung zum iterativen Vorgehen bei agilen Methoden deutlich.

Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.

Ist emotionale Intelligenz messbar?

emotion

In unserem Blog habe ich schon des öfteren über die Messbarkeit, bzw. über das Messbarmachen von allem geschrieben. Siehe dazu beispielhaft Die Messbarmachung der Intelligenz: Ein Phänomen der Industriealisierung?, oder If You Can Not Measure it, You Can Not Manage it – Stimmt das denn?. Doch diese Auffassung ist nicht totzukriegen.

“Sogar wenn es um emotionale Intelligenz geht, herrscht noch die Ansicht vor, man könne sie messen, indem man Fragen stellt, die das deklarative Wissen betreffen. Beispielsweise forderte man die Befragten auf, sich in Bezug auf die Aussage »Ich weiß, warum meine Gefühle sich verändern« selbst einzustufen (siehe Matthews et al. 2004). Dem liegt die Überzeugung zugrunde, dass Menschen in der Lage und bereit sind mitzuteilen, wie ihre Intelligenz funktioniert. Im Gegensatz dazu zeigten die einflussreichen Untersuchungen von Nisbett und Wilson (1977), dass wir häufig keinen introspektiven Zugriff auf die Gründe unserer Urteile und Gefühle haben. Die Forschung zum impliziten Lernen beschäftigt sich mit Lernvorgängen, die unabsichtlich und unbewusst stattfinden (Lieberman 2000; Shanks 2005)” (zitiert in Gigerenzer 2007:244).

Dazu passt auch die von Ryle beschriebene intellektualistische Legende.

Die Industrialisierung nimmt im Vergleich zu den vorherigen gesellschaftlichen und wirtschaftlichen Phasen eine sehr kleine Zeitspanne ein, doch halten wir diese Phase für diejenige, die auch in Zukunft mit ihrem Mindset die anstehenden komplexen Problemlösungen bestimmt.

Dabei kommt es heute und in Zukunft zu neuen Fragen, die allerdings oft mit alten Ansätzen beantwortet werden. Wir sollten uns langsam aber sicher von dem industriellen Mindset verabschieden und die Chancen der Reflexiven Modernisierung nutzen. Dieser Strukturbruch zwischen einfacher und reflexiver Modernisierung zeigt die erforderlichen Handlungsweisen auf.

Wann sind mehr Informationen von Nachteil?

Je mehr umso besser ist nicht immer von Vorteil, obwohl das viele Menschen glauben. Berry Schwartz hat beispielsweise schon 2004 in seinem Buch The Paradox of Choice erwähnt, dass die Vielfalt eines Angebots Kunden überfordern können, sodass diese dann nicht kaufen (Blogbeitrag). Prof. Dr. Gerd Gigerenzer, Direktor emeritus am Max-Planck-Institut für Bildungsforschung und Direktor des Harding-Zentrum für Risikokompetenz am Max-Planck-Institut für Bildungsforschung in Berlin, hat sich in einem Buch darüber so seine Gedanken gemacht.

Doch selbst wenn die Information kostenlos zur Verfügung steht, gibt es Situationen, in denen mehr Information von Nachteil sein kann. Mehr Gedächtnis ist nicht immer besser. Mehr Zeit ist nicht immer besser. Mehr Insiderwissen mag zwar dabei helfen, den Markt von gestern zu »erklären«, aber nicht, den Markt von morgen vorherzusagen. Weniger ist wahrhaft mehr unter den folgenden Bedingungen (Gigerenzer 2007:46-47):
• Nützliches Maß an Unwissenheit: Wie die Rekognitionsheuristik zeigt, kann das Bauchgefühl eine beträchtliche Menge an Wissen und Information übertreffen.
• Unbewusste motorische Fertigkeiten: Bauchgefühle erfahrener Experten beruhen auf unbewussten Fertigkeiten, deren Ausführung durch zu viel Nachdenken beeinträchtigt werden kann.
• Kognitive Einschränkungen: Unser Gehirn scheint über angeborene Mechanismen wie Vergessen und die Tendenz, klein anzufangen, zu verfügen, die uns vor der Gefahr schützen, zu viel Information zu verarbeiten. Ohne kognitive Einschränkungen würden wir uns weit weniger intelligent verhalten.
• Paradox der freien Wahl: Je mehr Optionen man hat, desto größer die Möglichkeit, dass es zu Konflikten kommt, und desto schwieriger, die Optionen zu vergleichen. Von einem bestimmten Punkt an schaden mehr Optionen, Produkte und Wahlmöglichkeiten dem Verkäufer wie dem Käufer.
• Vorzüge der Einfachheit: In einer ungewissen Welt können einfache Faustregeln komplexe Phänomene ebenso gut oder besser vorhersagen als komplexe Regeln.
• Informationskosten. Wie der Fall der Kinderärzte in der Universitätsklinik erkennen lässt, kann eine zu intensive Informationsbeschaffung einem Patienten schaden. Genauso kann zu viel Neugier das Vertrauen am Arbeitsplatz oder in Beziehungen zerstören.

Sollten also mehr Daten, mehr Informationen, mehr Wissen, mehr Können und mehr Kompetenzen unser Ziel sein? Wie Gigerenzer ausführt, sollte das bei bestimmten Bedingungen nicht der Fall sein, in anderen Settings allerdings sehr wohl. Dieses Sowohl-als-auch – dieses ambidextere – macht es Menschen und Organisationen nicht einfacher. Da wir uns immer mehr in vernetzte Systeme hineinbewegen, werden die von Gigerenzer genannten Bedingungen immer stärker zu beachten sein. Siehe dazu auch Die Messbarmachung der Intelligenz: Ein Phänomen der Industrialisierung?

Wie hängen Interaktion und Kontext zusammen?

Wenn es um Wissen, Kompetenz, Intelligenz, Lernen oder andere Themen geht, werden immer wieder die Begriffe Interaktion und Kontext genannt. Unklar ist allerdings häufig, was darunter zu verstehen ist. Der bekannte britische Soziologe Anthony Gidddens hat die beiden Begriffe schon vor vielen Jahren thematisiert.

The study of context, or of the contextualities of interaction, is inherent in the investigation of social reproduction. ‘context ‘involves the following (Giddens 1984:282):
( a) the time-space boundaries (usually having symbolic or physical markers) around interaction strips;
(b) the co-presence of actors, making possible the visibility of a diversity of facial expressions-, bodily gestures, linguistic and other media of communication;
(c) awareness and use of these phenomena reflexively to influence or control the flow of interaction.

Diese Charakterisierung kann auch heute noch verwendet werden. Dabei fällt auf, dass manche Bedingungen bei einer digitalen Interaktion/Kommunikation nicht gegeben sind. Beispielsweise sind die körperlichen Gesten oft nicht vollständig zu erkennen – auch in Bezug zu den körperlichen Gesten anderer Teilnehmer, die zeitgleich passieren.

Es stellt sich für mich die Frage, ob diese wenigen Elemente schon genügen können, die Interaktion und damit die Kommunikation zu verfälschen. In hoch komplexen Systemen kann eine kleine Änderung sehr große Auswirkungen haben …

Ist Wissensmanagement 4.0 ein hybrides Wissensmanagement?

Group of people with devices in hands working together as symbol of networking and communication

In dem Artikel North, K; Maier, R. (2018): Wissen 4.0 – Wissensmanagement im digitalen Wandel gehen die Autoren von der Annahme aus, dass die Wissensproduktion genau so wie Arbeit (Arbeit 1.0 bis Arbeit 4.0) in Wissen 1.0 bis 4.0 aufgeteilt werden kann. Dabei erweitern sie das Konstrukt der Wissenstreppe in eine Wissenstreppe 4.0.

Weiterhin gehen die Autoren davon aus, dass ein Wissensmanagement 4.0 operativ und strategisch unterstützend – und somit ambidexter – sein sollte.

Dem Konzept der „Beidhändigkeit“ (Ambidexterity, Tushman und O’Reilly 1996) folgend muss das Wissensmanagement sowohl aus operativer Perspektive die optimale Nutzung von Wissen für das aktuelle Geschäft sicherstellen („Exploitation“) als auch aus strategischer Perspektive das Wissen und die Lernfähigkeit für das zukünftige Geschäft entwickeln („Exploration“) (North/Maier 2018).

Dieses ambidextere Element von Wissensmanagement 4.0 erinnert stark an andere hybride Vorgehensweisen, die immer stärker in den Fokus rücken. Es handelt sich dabei beispielsweise um die hybride Wettbewerbsstrategie Mass Customization oder aber um das hybride Projektmanagement.

Abschließend würde ich noch folgende Punkte ergänzen:

  • Künstliche Intelligenz und Wissensmanagement.
  • Erweiterung der drei genannten Ebenen Individuum, Gruppe Organisation um die Ebene Netzwerk.
  • Bewertung des Wissenssystems mit Hilfe der Wissensbilanz – Made in Germany.
  • Abgrenzung zu einem Kompetenzmanagement auf den Ebenen Individuum, Gruppe, Organisation und Netzwerk – siehe dazu Freund (2011).

eQualification 2020: Projekte, Projekte, Projekte

Die Veröffentlichung BMBF (Hrsg.) (2019): eQualification 2020 PDF) ist ein Projektband des Förderbereichs “Digitale Medien in der beruflichen Bildung. Darin werden insgesamt 82 geförderte Projekte zum Thema “Lernen und Beruf digital verbinden” dargestellt. Eine kurze Beschreibung und der Link zur Projektseite helfen dabei, sich zu den verschiedenen Zielen weiter zu informieren.

Ich stelle mir allerdings folgende Frage: Handelt es sich hier um eQualification oder besser um eine digital unterstützte Kompetenzentwicklung?

Wie schon häufig in unserem Blog erwähnt, sollten beim Lernen nicht alleine technologische Aspekte, sondern stärker die individuellen und sozialen Lernprozesse im Mittelpunkt stehen. Ich habe allerdings den Eindruck, dass der Hype von E-Business, über E-Learning und E-Qualifikation viel zu stark das “E” berücksichtigt. Etwas extrem formuliert, könnte “E-Learning” als “E minus Learning” interpretiert werden.

Um es klar zu sagen: wir sind nicht gegen eine technologische Unterstützung von Lernprozessen. Immerhin haben wir mit unseren Blended Learning Angeboten gezeigt, wie eine sinnvolle Verbindung möglich – siehe Lernplattform.

Wie kam es zum Aufstieg von „sich engagieren und kollaborieren“?

Wie kommt es eigentlich, dass sich viele Menschen stärker engagieren und auch mehr kooperieren?

Die Grafik zeigt, wie sich Tapscott den Weg vorstellt. Dabei geht er von zwei bestimmenden Größen aus: Der Kontrolle und der Komplexität. Die Achsenbeschriftungen zeigen, dass die Kontrolle bei steigender Komplexität niedriger wird. Die steigende Komplexität (Grad der Komplexität) steigt durch die in den letzten Jahrhunderten zunehmende Vernetzung von Kontinenten (Seewege, Land- und Luftverbindungen) von IT-Systemen und letztendlich der Vernetzung von allem.

Der beschriebene Weg kann auch für Arbeit (Von Arbeit 1.0 zu Arbeit 4.0) oder auch für das Management beschrieben werden (Von Management 1.0 zu Management 4.0). In allen Unternehmens- und gesellschaftlichen Bereichen geht es darum, mehr Selbstorganisation zuzulassen, denn Selbstorganisation ist die Antwort auf Komplexität. Dabei ist der Begriff “Selbstorganisation” Bestandteil der Definition von Kompetenz als Selbstorganisationsdisposition (Erpenbeck/Heyse).

Die Kompetenzentwicklung auf individueller Ebene, Gruppenebene, organisationaler Ebene und in Netzwerken stellt somit eine Hauptaufgabe für Unternehmen in allen anderen gesellschaftlichen Bereichen dar. Siehe dazu auch Freund, R. (2011): Das Konzept der Multiplen Kompetenz auf den Analyseebenen Individuum, Gruppe, Organisation und Netzwerk.