An dieser Stelle möchte ich mich nicht an den bekannten Modellen aus Europa orientieren, sondern auch einmal nach Asien schauen. Die APO (Asian Productivity Organization) beispielsweise orientiert sich an den folgenden 5 Aktivitäten, die den europäischen Modellen allerdings sehr ähneln : Identifying the Knowledge – Creating Knowledge – Storing Knowledge – Sharing Knowledge – Applying Knowledge. Die APO (2020) schlägt für den Schritt “Creating knowledge” (Wissen schaffen) vor, folgende Methoden/Tools zu nutzen:
Brainstorming Learnings and Ideas Capture Learning Reviews After Action Reviews Collaborative Physical Workspaces Knowledge Café Communities of Practice Knowledge Bases (Wikis, etc.) Blogs Video Communication and Webinars Advanced Search Building Knowledge Clusters Expertise Locator/Who’s Who Collaborative Virtual Workspaces Mentor/Mentee Scheme Knowledge Portal Video Sharing
Aktuell drehen sich die Diskussionen bei der Nutzung von Künstlicher Intelligenz (AI: Artificial Intelligence) hauptsächlich noch um die genutzten LLM: Large Language Models (Trainingsdatenbanken), und darum, ob diese eher closed-source oder open-source sein sollten. Wie in der Abbildung zu sehen ist, zeichnet sich darüber hinaus schon ein weiterer großer Trend ab: AI Agenten.
“Based on the definition of the International Organization for Standardization, an AI agent can be broadly defined as an entity that senses percepts (sound, text, image, pressure etc.) using sensors and responds (using effectors) to its environment. AI agents generally have the autonomy (defined as the ability to operate independently and make decisions without constant human intervention) and authority (defined as the granted permissions and access rights to perform specific actions within defined boundaries) to take actions to achieve a set of specified goals, thereby modifying their environment” (WEF 2024).
Neben den Large Language Models (LLM) kommen somit bei AI Agenten u.a. auch noch Daten von Sensoren und möglicherweise menschliches Feedback hinzu. Daraus ergeben sich ganz neue Möglichkeiten bei komplexen Problemlösunmgsprozessen.
Natürlich können AI AgentenTypen unterschieden werden, beispielsweise in deterministic und non-deterministic etc. Auch kann ein AI Agenten System aus ganz verschiedenen AI Agenten entstehen. Diese wenigen Hinweise zeigen schon auf, welche vielversprechenden neuen Möglichkeiten/Anwendungen sich ergeben können. Natürlich immer unter der Prämisse der Transparenz und Offenheit, um Missbrauch zu verhindern. Es liegt für mich daher auf der Hand. sich mit Open Source AI Agenten zu befassen.
Arbeiten ist heute eingebettet in digitale Prozesse, und verändert sich dadurch erheblich. In einer digitalen (Arbeits-) Welt werden über Qualifikationen hinaus daher entsprechende Kompetenzen benötigt, um selbstorganisiert komplexe Problemstellungen zu lösen – Kompetenz als Selbstorganisationsdisposition. In einer Metaanalyse des MÜNCHNER KREIS-Arbeitskreis „Arbeit in der digitalen Welt“ (2020, S. 4ff.) wurden sechs Kompetenzfelder als Basiskompetenzen zusammengefasst:
Personenbezogene Kompetenzen
Selbstorganisation, Lernfähigkeit
Soziale Kompetenzen
Kommunikation, Teamfähigkeit
Mensch-Maschine-Interaktion (MMI) Kompetenzen
Umgang mit Daten, Technologien, Wissen
Prozesskompetenz
Kritisches Denken, Problemlösefähigkeit
Lösungskompetenz
Kreativität, Transdiziplinäres Denken
Strategische Kompetenz
Adaptionsfähigkeit, Unternehmerisches Denken
Quelle: Schipanski, A. (2024), in Koller et al. (Hrsg.) (2024)
Wenn es um die Beschreibung des Umfeldes von Organisationen oder Branchen geht, fallen oft die Begriffe “Trends” und/oder “Treiber“. Dabei ist oft nicht ganz klar, worin sich beide Begriffe unterscheiden. Eine gute Erklärung, natürlich mit verschiedenen Quellenangaben, habe ich hier gefunden:
“Im Vergleich zu Trends sind Treiber lokaler, weniger langlebig und wirken sich direkter auf Geschäftsmodelle, Arbeitsprozesse, Technologien, Beschäftigung sowie auf Beschäftigte und deren Kompetenzen aus (vgl. Proff 2021; Hünniger et al. 2022, S. 4). In der Regel resultieren Treiber aus Trends und können von einzelnen Akteuren und Akteurinnen oder Organisationen bis zu einem gewissen Grad beeinflusst werden. Automatisierung, Elektromobilität, Elektrifizierung, Vernetzung, Industrie 4.0-Anwendungen und Kreislaufwirtschaft werden als wesentliche Treiber der Transformation im Automobilsektor beschrieben (vgl. Kaul et al. 2019; Kempermann et al. 2021; Lichtblau et al. 2021; Herrmann et al. 2023)” (Berger et al. (2024), in Jennewein et al. (Hrsg.) (2024)).
Natürlich sollte eine Organisation die langfristigen Trends beobachten. Mehr oder weniger beeinflussbar sind allerdings eher Treiber, die direkter in der Organisationsstruktur berücksichtigt werden können.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Kanban hat sich ursprünglich aus der Produktion entwickelt und ist über die Software-Entwicklung (Anderson 2010) zu einem wichtigen Instrument der Wissensarbeit geworden. Kanban hat grundsätzlich das Ziel, in jedem Schritt einen Wert zu generieren und die jeweiligen Anforderungen mit der Leistungsfähigkeit des Prozessschrittes in Einklang zu bringen. Das kann auf der individuellen Ebene, der Teamebene oder der organisationalen Ebene sein.
Ein wichtiges Element von Kanban ist die Engpasssteuerung. Basis dieser Überlegung ist es, dass in einem Prozess immer wieder zu Engpässen kommt, die dann den gesamten Wertschöpfungsprozess behindern können. Das führt uns zu den Überlegungen von Goldratt, der in seiner Theory of Constraints das Bild von Drum-Buffer-Rope benutzt, um die Zusammenhänge zu erläutern.
“Es schien sinnvoller zu sein, für einen verbesserten Arbeitsablauf zu sorgen, indem man einen Engpass nach dem anderen beseitigt. Dies ist die Kernidee hinter der Engpasstheorie von Goldratt. (…) Goldratts Ansatz (…) zielt darauf ab, einen Engpass zu identifizieren und dann Wege zu finden, diesen zu erweitern, bis er die Leistungsfähigkeit nicht mehr einschränkt. Sobald dies passiert ist, wird ein neuer Engpass sichtbar und der Zyklus wiederholt sich. (…) Drum-Buffer-Rope erzeugt Pull-Signale im Tempo des Engpasses und verhindert damit eine Überlastung des gesamten Systems, es erzeugt Stabilität. Allerdings ist es in seiner einfachsten Form nicht robust gegenüber Schwankungen in der Durchlaufzeit oder in Ungleichmäßigkeiten im Arbeitsfluss vor dem Engpass” (Anderson 2024).
Drum-Buffer-Rope in einer Organisation so zu erklären, dass andere es verstehen, ist nicht ganz einfach. Weiterhin kommen noch die Probleme bei Schwankungen usw. hinzu. Genau hier kommt Kanban ins Spiel. Mit Hilfe von Kanban ist es möglich, diese Schwierigkeiten zu lösen und einen evolutionären Prozess anzustoßen.
“Kanban hat das Dilemma gelöst, einen Ansatz zu finden, der sowohl eine nachhaltige Geschwindigkeit als auch die Einführung von Veränderungen zur Verbesserung der wirtschaftlichen Leistung ohne nennenswerten Widerstand oder Trägheit ermöglicht” (Anderson 2024).
Dieser Prozess führt letztendlich zu einer Agilen Organisation, die die aktuellen Strukturen und die Mitarbeiter mitnimmt, die Arbeitsformen und agiler ausrichtet. Alle oben genannten Ebenen werden stabiler gegenüber Schwankungen und somit resilienter.
Ich stelle allerdings immer wieder fest, dass viele Organisationen den Begriff Kanban verwenden und nur ein einfaches Task Board damit meinen. In solchen Organisationen ist das Verständnis von Kanban und das entsprechende Mindset noch nicht geschaffen. Weitere Blogbeiträge zu Kanban finden Sie hier.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Wissen im Unternehmen ist in allen Prozessen einer Organisation relevant. Manchmal findet man Wissen in Form von Daten und Informationen in IT-Systemen, manchmal ist spezielles Wissen an Personen gebunden.
Solche Schlüsselpersonen werden immer wieder kontaktiert, doch gibt es oftmals keinen Überblick darüber, was solche Schlüsselpersonen ausmacht. In einer Veröffentlichung wurden nun Merkmalscluster für Schlüsselpersonen in Kleinen und mittleren Unternehmen (KMU) ermittelt, die in der genannten Quelle detaillierter dargestellt werden:
Exklusives Wissen – Spezialisierte )Unternehmens-) Kenntnisse und Erfahrungen – Mangelnde Bereitschaft/Möglichkeit Wissen zu teilen
Spezielle Kompetenzen – Stark ausgeprägte soziale Kompetenzen. – Stark ausgeprägte Fach-Kompetenzen
Vernetzung und Beziehung – Interne fachübergreifende Beziehungen – Starke Beziehung zu Geschäftspartner:innen
Es ist immer wieder gut, sich Zusammenhänge klar zu machen. In der Abbildung ist beispielsweise zu sehen, dass die Digital Transformation / Optimization einen Ist-Zustand in einen möglichst besseren Soll-Zustand überführen soll. Digital Optimization soll dabei die Geschäftsprozesse zu einer höheren Produktivität führen, allerdings oftmals ohne dass ein Geschäftsmodell verändert wird, bzw. werden muss. Insofern kann man Digital Optimization als Bestandteil von Digital Transformation ansehen. Weiterhin hängen auch Digitale Transformation und Digital Kaizen miteinander zusammen (APO 2024):
Kaizen will facilitate the adoption of advanced technologies.
Kaizen maximizes return on investment.
Changing corporate culture and climate and continuous learning.
Achieving stable sustainability over the long term.
Achieving stable sustainability over the long term
In other words, “there is no DX [Digital Transformation] success without kaizen.”
Es geht bei Digital Kaizen also um eine wichtige Erweiterung des Ansatzes, der bei Imai, M. (1993): Kaizen – Der Schlüssel der Japaner im Wettbewerb nachzulesen ist. Damals ging es noch um ein eher analoges Kaizen. Danach hat Anderson (2010) in seinem Buch Kaizen in der IT schon gezeigt, dass Kaizen nicht nur in der Produktion, sondern in allen Wissensbereichen genutzt werden kann. Heute gibt es mit IoT und Künstlicher Intelligenz noch ganz andere Möglichkeiten.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Es gibt verschiedene Wissensmanagement-Modelle, die sich ähneln, allerdings auch unterscheiden. Das Modell von Probst/Raub/Romhardt, das SEKI-Modell, das Münchener Modell, das Fraunhofer-Referenzmodell, das EU-Modell, und das Geschäftsprozessorientierte Wissensmanagement sollen hier nur beispielhaft genannt werden. Die Wissensmanagement-Modelle, die von 4, 5 oder 6 Wissensmanagement-Kernaktivitäten ausgehen, sollen hier weiter betrachtet werden.
An dieser Stelle möchte ich mich nicht an den bekannten Modellen aus Europa orientieren, sondern auch einmal nach Asien schauen. Die APO (Asian Productivity Organization) beispielsweise orientiert sich an den folgenden 5 Aktivitäten, die den europäischen Modellen allerdings sehr ähneln : Identifying the Knowledge – Creating Knowledge – Storing Knowledge – Sharing Knowledge – Applying Knowledge. Die APO (2020) schlägt für den ersten Schritt “Indentifying the knowledge” (Wissen identifizieren) vor, folgende Methoden/Tools zu nutzen:
APO Knowledge Assessment Tool Knowledge Café Communities of Practice Advanced Search Tools Building Knowledge Clusters Expertise Locator/Who’s Who Collaborative Virtual Workspaces Knowledge Mapping KM Maturity Model Mentor/Mentee Scheme
In dem Beitrag Ist Resilienz eine persönliche Eigenschaft oder Kapazität? wurde eine Sichtweise auf Resilienz erläutert und von Autoren eines wissenschaftlichen Papers kritisch hinterfragt. In dieser Veröffentlichung wird anschließend der Frage nachgegangen ob es sinnvoll ist, Resilienz als Outcome zu betrachten.
“Im Rahmen der Outcome-Perspektive liegt der Fokusdarauf, ob eine Person, die mit einer Widrigkeit konfrontiert war, eine positive Anpassung daran gezeigt hat (Brittet al., 2016). (…) Die Idee des Zurückspringens in einen bestimmten Ausgangsstatus, bezeichnet als ‚bouncing back‘ ist zentrales Merkmal des Outcome Ansatzes (vgl. Fisher et al., 2019).” Quelle: M. Arnold, M. Schilbach, and T. Rigotti, “Paradigmen der psychologischen Resilienzforschung: Eine kleine Inventur und ein Ausblick,” Psychologische Rundschau, vol. 74, no. 3, pp. 154–165, Jul. 2023, doi: 10.1026/0033-3042/a000627.
Auch hier erkennen die Autoren durchaus methodische und praktische Limitierungen, die in dem genannten Paper ausführlich kommentiert werden. Siehe dazu auch