Insgesamt finden Sie bei uns jetzt 4.089 Blogbeiträge. Davon sind ca. 340 alleine im Jahr 2024 hinzugekommen.
Alle Beiträge wurden in diesem Jahr 45.792 mal aufgerufen – für uns ein Rekordwert.
Auch die Anzahl der Besucher hat sich in diesem Jahr deutlich erhöht: Mit 20.563 Besucher ist das der bisher höchste Stand.
Diese Zahlen sind umso beeindruckender, da wir in unseren Blogbeiträgen doch recht spezielle Themen ansprechen und mit den jeweiligen Quellen versehen.
Bei LinkedIn besteht mein Netzwerk aktuell aus 714 Kontakten.
Unser Twitter-Account hat aktuell 1.198 Follower.
Bei Facebook sind wir (Jutta und ich) aktuell mit ca.1.800 Personen befreundet – 1.500 davon mit Jutta.
In diesem Beitrag geht es mir darum aufzuzeigen, wie Künstliche Intelligenz bei Open Innovation genutzt werden kann. Wie der folgenden Tabelle zu entnehmen ist, kann zwischen der Verbesserung von Open Innovation durch KI (OI-Enhancing AI), einer Ermöglichung von Open Innovation durch KI (OI-Enabling AI) und der Ersetzung von Open Innovation durch KI (OI-Peplacing AI) unterschiedenen werden. Die jeweils genannten Beispiele zeigen konkrete Einsatzfelder.
Description
Examples
OI-Enhancing AI
AI that enhances established forms of open innovation by utilizing the advantages of AI complemented with human involvement
Innovation search Partner search Idea evaluation Resource utilization
OI-Enabling AI
AI that enables new forms of open innovation, based upon AI’s potential to coordinate and/or generate innovation
AI-enabled markets AI-enabled open business models Federated learning
OI-Replacing AI
AI that replaces or significantly reshapes established forms of open innovation
AI ideation Synthetic data Multi-agent systems
Quelle: Holgersson et al. (2024)
Alle drei Möglichkeiten – mit den jeweils genannten Beispielen – können von einem KI-Modell (z.B. ChatGPT oder Gemeni etc.) der eher kommerziell orientierten Anbieter abgedeckt werden. Dieses Vorgehen kann als One Sizes Fits All bezeichnet werden.
Eine andere Vorgehensweise wäre, verschiedene spezialisierte Trainingsmodelle (Large Language Models) für die einzelnen Prozessschritte einzusetzen. Ein wesentlicher Vorteil wäre, dass solche LLM viel kleiner und weniger aufwendig wären. Das ist gerade für Kleine und Mittlere Unternehmen (KMU) von Bedeutung.
Nicht zuletzt kann auch immer mehr leistungsfähige Open Source AI eingesetzt werden. Dabei beziehe ich mich auf die zuletzt veröffentlichte Definition zu Open Source AI. Eine Erkenntnis daraus ist: OpenAI ist kein Open Source AI. Die zuletzt veröffentlichten Modelle wie TEUKEN 7B oder auch Comon Corpus können hier beispielhaft für “wirkliche” Open source AI genannt werden.
Weiterhin speilen in Zukunft AI Agenten – auch Open Source – eine immer wichtigere Rolle.
Translate »
Diese Website benutzt Cookies. Wenn du die Website weiter nutzt, gehen wir von deinem Einverständnis aus.OK