Auch im Vertragsmanagement wird immer mehr digitalisiert und automatisiert. Die Automatisierung nutzt dabei immer mehr mit den Möglichkeiten der Künstlichen Intelligenz.
“Bereits heute lässt der US-amerikanische Einzelhandelsriese Walmart den Einkauf testweise von einem Chatbot erledigen” (Fraunhofer Magazin 4/2024 | PDF). Hier verhandeln also Software -Agenten den jeweiligen Preis.
Bei immer stärkeren Nutzung von Künstlicher Intelligenz im Vertragsmanagement kommt man auch zu folgender Frage,: Ist ein Vertrag rechtssicher ist, wenn er von Künstlicher Intelligenz unterzeichnet wurde? Das Projekt RECHT-TESTBED soll helfen, hier etwas Klarheit zu erhalten. In dem vom Fraunhofer Institut entwickelten Online-Portal können Interessenten Ein Szenario auswählen, das Szenario und ein Experiment konfigurieren, sowie das Experiment starten.
Ich muss allerdings anmerken, dass verschiedene Elemente nicht richtig funktionieren, und es teilweise zu einer Fehlermeldung kommt (Stand: 23.12.2024). Schade, denn ich halte so eine Online-Möglichkeit für sinnvoll. Gerade für Kleine und mittlere Unternehmen (KMU) kann diese Plattform hilfreich sein.
Um noch einmal auf die gestellte Frage zurückzukommen: “Ob vom Menschen oder von Künstlicher Intelligenz unterzeichnet – Vertrag ist Vertrag. Damit können automatisch geschlossene Verträge als rechtssicher gelten” Fraunhofer Magazin 4/2024. Bei dem Artikel wurde ein fiktiver Gerichtsprozess beschrieben, in dem es dann zu dieser Entscheidung gekommen ist.
Wie in dem Kompetenztableau dargestellt, entsteht die Handlungsfähigkeit in komplexen Problemlösungssituationen durch mehrere Kompetenzdimensionen. Eine davon ist die Kommunikationskompetenz, die an dieser Stelle noch einmal ausführlicher dargestellt werden soll:
“Die Kommunikationskompetenz beschreibt die Fähigkeiten, sich in kooperativen und kommunikativen Prozessen zielgerichtet sowie möglichst konfliktfrei und wirksam zu verhalten. Über solche Fähigkeiten verfügt man in aller Regel nicht qua Erfahrungslernen, vielmehr setzten sie einen distanzierten Blick auf das Wesen der Kommunikation sowie ein Verständnis der unterschiedlichen Dimensionen des kommunikativen Handelns voraus. Die Weiterentwicklung und Optimierung des eigenen Kommunikationsverhaltes bedarf zudem der Erprobung sowie der Übung in Feedback-Kontexten. Kommunikative Kompetenz reift durch Selbstdistanz, Selbstbeobachtung und Selbstreflexion sowie Wirksamkeitserleben, nicht durch die vordergründig-mechanische Befolgung bestimmter Regeln” (Arnold 2017).
Wie am Ende erwähnt, sollte man sich nicht so sehr auf die vielen Ratgeber zur Kommunikation verlassen, sondern darauf vertrauen, dass Kommunikationskompetenz mit der Zeit reift – sich entwickelt.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Die bekannten KI-Anwendungen (AI Apps) wie ChatGPT, Gemini usw. dominieren den Markt und setzen durch schnelle Neuerungen (Updates) Standards bei der Performance. Solche Angebote können als closed-source Large Language Models (LLMs) bezeichnet werden. Die Nutzung wird dabei durch wenig Transparenz bei den verwendeten Daten und durch immer mehr kostenpflichtige Angebote “erkauft”.
Diese schnelle Abhängigkeit von der jeweiligen Funktionsweise der verwendeten KI-Apps führt bei einem Wechsel – beispielsweise zu Open Source AI – zu erhöhten Switching Costs. Diesen Effekt nutzen die kommerziellen Anbieter, um ihr Geschäftsmodell weiter zu etablieren und zu kommerzialisieren.
Open Source AI (Definition) bedeutet u.a. die Transparenz bei den Trainingsdaten zu schaffen, und den Zugang für jeden zu ermöglichen. Meine Auffassung ist, dass Open Source AI in Zukunft für Privatpersonen, Organisationen und demokratische Gesellschaften besser ist. Siehe dazu Digitale Souveränität: Europa, USA und China im Vergleich.
Diese Ansicht wird auch von wissenschaftlichen Forschungen zu dem Thema gestützt. Eine aktuelle Veröffentlichung von Manchanda et al. (2024) beschreibt die Zusammenhänge wie folgt:
“Closed-source LLMs continue to lead in performance, leveraging proprietary datasets and significant computational investments to excel in tasks requiring advanced generative abilities, multi-step reasoning, and broad generalization. However, their success comes at the cost of limited transparency and restricted accessibility, which creates challenges for external validation and replication.
The closed-source approach also consolidates resources and technological power within a few institutions. In so doing, it poses barriers to equitable AI development and raising concerns about reproducibility of outcomes and organizational accountability. By contrast, open-source LLMs emphasize accessibility and collaborative development. While these models often trail closed-source systems in absolute performance, they have made significant progress in narrowing the gap through methods such as Low-Rank Adaptation (LoRA) and quantization. These strategies enable efficient, competitive outcomes even in resource-constrained environments. By utilizing diverse datasets across languages and contexts, open-sourcemodels demonstrate their capacity to address realworld challenges with inclusivity. This democratic ethos has already empowered researchers and developers globally, and is likely to continue to do so” (Manchanda et al 2024).
An dieser Stelle möchte ich mich nicht an den bekannten Modellen aus Europa orientieren, sondern auch einmal nach Asien schauen. Die APO (Asian Productivity Organization) beispielsweise orientiert sich an den folgenden 5 Aktivitäten, die den europäischen Modellen allerdings sehr ähneln : Identifying the Knowledge – Creating Knowledge – Storing Knowledge – Sharing Knowledge – Applying Knowledge. Die APO (2020) schlägt für den Schritt “Creating knowledge” (Wissen schaffen) vor, folgende Methoden/Tools zu nutzen:
Brainstorming Learnings and Ideas Capture Learning Reviews After Action Reviews Collaborative Physical Workspaces Knowledge Café Communities of Practice Knowledge Bases (Wikis, etc.) Blogs Video Communication and Webinars Advanced Search Building Knowledge Clusters Expertise Locator/Who’s Who Collaborative Virtual Workspaces Mentor/Mentee Scheme Knowledge Portal Video Sharing
Aktuell drehen sich die Diskussionen bei der Nutzung von Künstlicher Intelligenz (AI: Artificial Intelligence) hauptsächlich noch um die genutzten LLM: Large Language Models (Trainingsdatenbanken), und darum, ob diese eher closed-source oder open-source sein sollten. Wie in der Abbildung zu sehen ist, zeichnet sich darüber hinaus schon ein weiterer großer Trend ab: AI Agenten.
“Based on the definition of the International Organization for Standardization, an AI agent can be broadly defined as an entity that senses percepts (sound, text, image, pressure etc.) using sensors and responds (using effectors) to its environment. AI agents generally have the autonomy (defined as the ability to operate independently and make decisions without constant human intervention) and authority (defined as the granted permissions and access rights to perform specific actions within defined boundaries) to take actions to achieve a set of specified goals, thereby modifying their environment” (WEF 2024).
Neben den Large Language Models (LLM) kommen somit bei AI Agenten u.a. auch noch Daten von Sensoren und möglicherweise menschliches Feedback hinzu. Daraus ergeben sich ganz neue Möglichkeiten bei komplexen Problemlösunmgsprozessen.
Natürlich können AI AgentenTypen unterschieden werden, beispielsweise in deterministic und non-deterministic etc. Auch kann ein AI Agenten System aus ganz verschiedenen AI Agenten entstehen. Diese wenigen Hinweise zeigen schon auf, welche vielversprechenden neuen Möglichkeiten/Anwendungen sich ergeben können. Natürlich immer unter der Prämisse der Transparenz und Offenheit, um Missbrauch zu verhindern. Es liegt für mich daher auf der Hand. sich mit Open Source AI Agenten zu befassen.
Arbeiten ist heute eingebettet in digitale Prozesse, und verändert sich dadurch erheblich. In einer digitalen (Arbeits-) Welt werden über Qualifikationen hinaus daher entsprechende Kompetenzen benötigt, um selbstorganisiert komplexe Problemstellungen zu lösen – Kompetenz als Selbstorganisationsdisposition. In einer Metaanalyse des MÜNCHNER KREIS-Arbeitskreis „Arbeit in der digitalen Welt“ (2020, S. 4ff.) wurden sechs Kompetenzfelder als Basiskompetenzen zusammengefasst:
Personenbezogene Kompetenzen
Selbstorganisation, Lernfähigkeit
Soziale Kompetenzen
Kommunikation, Teamfähigkeit
Mensch-Maschine-Interaktion (MMI) Kompetenzen
Umgang mit Daten, Technologien, Wissen
Prozesskompetenz
Kritisches Denken, Problemlösefähigkeit
Lösungskompetenz
Kreativität, Transdiziplinäres Denken
Strategische Kompetenz
Adaptionsfähigkeit, Unternehmerisches Denken
Quelle: Schipanski, A. (2024), in Koller et al. (Hrsg.) (2024)
Wenn es um die Beschreibung des Umfeldes von Organisationen oder Branchen geht, fallen oft die Begriffe “Trends” und/oder “Treiber“. Dabei ist oft nicht ganz klar, worin sich beide Begriffe unterscheiden. Eine gute Erklärung, natürlich mit verschiedenen Quellenangaben, habe ich hier gefunden:
“Im Vergleich zu Trends sind Treiber lokaler, weniger langlebig und wirken sich direkter auf Geschäftsmodelle, Arbeitsprozesse, Technologien, Beschäftigung sowie auf Beschäftigte und deren Kompetenzen aus (vgl. Proff 2021; Hünniger et al. 2022, S. 4). In der Regel resultieren Treiber aus Trends und können von einzelnen Akteuren und Akteurinnen oder Organisationen bis zu einem gewissen Grad beeinflusst werden. Automatisierung, Elektromobilität, Elektrifizierung, Vernetzung, Industrie 4.0-Anwendungen und Kreislaufwirtschaft werden als wesentliche Treiber der Transformation im Automobilsektor beschrieben (vgl. Kaul et al. 2019; Kempermann et al. 2021; Lichtblau et al. 2021; Herrmann et al. 2023)” (Berger et al. (2024), in Jennewein et al. (Hrsg.) (2024)).
Natürlich sollte eine Organisation die langfristigen Trends beobachten. Mehr oder weniger beeinflussbar sind allerdings eher Treiber, die direkter in der Organisationsstruktur berücksichtigt werden können.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Kanban hat sich ursprünglich aus der Produktion entwickelt und ist über die Software-Entwicklung (Anderson 2010) zu einem wichtigen Instrument der Wissensarbeit geworden. Kanban hat grundsätzlich das Ziel, in jedem Schritt einen Wert zu generieren und die jeweiligen Anforderungen mit der Leistungsfähigkeit des Prozessschrittes in Einklang zu bringen. Das kann auf der individuellen Ebene, der Teamebene oder der organisationalen Ebene sein.
Ein wichtiges Element von Kanban ist die Engpasssteuerung. Basis dieser Überlegung ist es, dass in einem Prozess immer wieder zu Engpässen kommt, die dann den gesamten Wertschöpfungsprozess behindern können. Das führt uns zu den Überlegungen von Goldratt, der in seiner Theory of Constraints das Bild von Drum-Buffer-Rope benutzt, um die Zusammenhänge zu erläutern.
“Es schien sinnvoller zu sein, für einen verbesserten Arbeitsablauf zu sorgen, indem man einen Engpass nach dem anderen beseitigt. Dies ist die Kernidee hinter der Engpasstheorie von Goldratt. (…) Goldratts Ansatz (…) zielt darauf ab, einen Engpass zu identifizieren und dann Wege zu finden, diesen zu erweitern, bis er die Leistungsfähigkeit nicht mehr einschränkt. Sobald dies passiert ist, wird ein neuer Engpass sichtbar und der Zyklus wiederholt sich. (…) Drum-Buffer-Rope erzeugt Pull-Signale im Tempo des Engpasses und verhindert damit eine Überlastung des gesamten Systems, es erzeugt Stabilität. Allerdings ist es in seiner einfachsten Form nicht robust gegenüber Schwankungen in der Durchlaufzeit oder in Ungleichmäßigkeiten im Arbeitsfluss vor dem Engpass” (Anderson 2024).
Drum-Buffer-Rope in einer Organisation so zu erklären, dass andere es verstehen, ist nicht ganz einfach. Weiterhin kommen noch die Probleme bei Schwankungen usw. hinzu. Genau hier kommt Kanban ins Spiel. Mit Hilfe von Kanban ist es möglich, diese Schwierigkeiten zu lösen und einen evolutionären Prozess anzustoßen.
“Kanban hat das Dilemma gelöst, einen Ansatz zu finden, der sowohl eine nachhaltige Geschwindigkeit als auch die Einführung von Veränderungen zur Verbesserung der wirtschaftlichen Leistung ohne nennenswerten Widerstand oder Trägheit ermöglicht” (Anderson 2024).
Dieser Prozess führt letztendlich zu einer Agilen Organisation, die die aktuellen Strukturen und die Mitarbeiter mitnimmt, die Arbeitsformen und agiler ausrichtet. Alle oben genannten Ebenen werden stabiler gegenüber Schwankungen und somit resilienter.
Ich stelle allerdings immer wieder fest, dass viele Organisationen den Begriff Kanban verwenden und nur ein einfaches Task Board damit meinen. In solchen Organisationen ist das Verständnis von Kanban und das entsprechende Mindset noch nicht geschaffen. Weitere Blogbeiträge zu Kanban finden Sie hier.
Solche Zusammenhänge thematisieren wir auch in den von uns entwickelten Blended Learning Lehrgängen Projektmanager/in (IHK) und Projektmanager/in Agil (IHK), die wir an verschiedenen Standorten anbieten. Weitere Informationen zu den Lehrgängen und zu Terminen finden Sie auf unserer Lernplattform.
Wissen im Unternehmen ist in allen Prozessen einer Organisation relevant. Manchmal findet man Wissen in Form von Daten und Informationen in IT-Systemen, manchmal ist spezielles Wissen an Personen gebunden.
Solche Schlüsselpersonen werden immer wieder kontaktiert, doch gibt es oftmals keinen Überblick darüber, was solche Schlüsselpersonen ausmacht. In einer Veröffentlichung wurden nun Merkmalscluster für Schlüsselpersonen in Kleinen und mittleren Unternehmen (KMU) ermittelt, die in der genannten Quelle detaillierter dargestellt werden:
Exklusives Wissen – Spezialisierte )Unternehmens-) Kenntnisse und Erfahrungen – Mangelnde Bereitschaft/Möglichkeit Wissen zu teilen
Spezielle Kompetenzen – Stark ausgeprägte soziale Kompetenzen. – Stark ausgeprägte Fach-Kompetenzen
Vernetzung und Beziehung – Interne fachübergreifende Beziehungen – Starke Beziehung zu Geschäftspartner:innen